Preferred Language
Articles
/
bsj-1297
On Primary Multipliction Modules
...Show More Authors

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
On Strongly F – Regular Modules and Strongly Pure Intersection Property
...Show More Authors

A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules
...Show More Authors

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
...Show More Authors
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiprime Fuzzy Modules
...Show More Authors

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Publication Date
Thu Oct 16 2014
Journal Name
Journal Of Advances In Mathematics
Strongly Rickart Modules
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Couniform Modules
...Show More Authors

In this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Couniform Modules
...Show More Authors

In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annsemimaximal and Coannsemimaximal Modules
...Show More Authors

        Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Space of Primary La-submodules
...Show More Authors

     Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.

View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Min (Max)-CS Modules
...Show More Authors

 In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.

View Publication Preview PDF