Preferred Language
Articles
/
bsj-1121
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Semi-Prime Submodules and Some Related Concepts
...Show More Authors

    We introduce in this paper the concept of approximaitly semi-prime submodules of unitary left -module  over a commutative ring  with identity as a generalization of a prime submodules and semi-prime submodules, also generalization of quasi-prime submodules and approximaitly prime submodules. Various basic properties of an approximaitly semi-prime submodules are discussed, where a proper submodule  of an -module  is called an approximaitly semi-prime submodule of  , if whenever , where ,  and , implies that . Furthermore the behaviors of approximaitly semi-prime submodule in some classes of modules are studied. On the other hand several characterizations of this concept are

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
End á´ª -Prime Submodules
...Show More Authors

      Let R be a commutative ring with identity and M  an unitary R-module. Let (M)  be the set of all submodules of M, and : (M)  (M)  {} be a function. We say that a proper submodule P of M is end--prime if for each   EndR(M) and x  M, if (x)  P, then either x  P + (P) or (M)  P + (P). Some of the properties of this concept will be investigated. Some characterizations of end--prime submodules will be given, and we show that under some assumtions prime submodules and end--prime submodules are coincide.

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Quasi-Prime Module
...Show More Authors

  In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.

View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts
...Show More Authors

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Planner And Development
Affordable Housing Policies in Iraq and Jordan
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
International Mathematical Forum
Strongly Rickart *-rings
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dual Notions of Prime Modules
...Show More Authors

       Let R be a commutative ring with unity .M an R-Module. M is called coprime module     (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M   In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
J-Prime submodules and some related concepts
...Show More Authors

Suppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.

Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
Semi-essentially prime modules
...Show More Authors

Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.

Scopus Clarivate Crossref
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Prime Submodules
...Show More Authors

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF