Preferred Language
Articles
/
bsj-1121
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Derivable Maps of Prime Rings
...Show More Authors

Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e  0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR  R and Re  R .
(ii) xR  0 implies x  0 .
(iii ) eRx  0 implies x  0( and hence Rx  0 implies x  0) .
(iv) exeR(1 e)  0 implies exe  0 .
If D is a derivable map of R satisfying D(R )  R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.

View Publication Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
On (σ,τ)-Derivations and Commutativity of Prime and Semi prime Γ-rings
...Show More Authors

Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.

View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2023
Journal Name
Iraqi Journal Of Science
On Jordan Generalized Reverse Derivations on -rings
...Show More Authors

In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.

View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Reverse *-Centralizers on *-Lie Ideals
...Show More Authors

The purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y  U , and T(u) U, for all uU, then T is a reverse *-centralizer.

View Publication Preview PDF
Publication Date
Mon May 31 2021
Journal Name
Iraqi Journal Of Science
Jordan Left Derivation and Centralizer on Skew Matrix Gamma Ring
...Show More Authors

We define skew matrix gamma ring and describe the constitution of Jordan left centralizers and derivations on skew matrix gamma ring on a  -ring. We also show the properties of these concepts.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Generalized Permuting 3-Derivations of Prime Rings
...Show More Authors

This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
On Semigroup Ideals and Right n-Derivation in 3-Prime Near-Rings
...Show More Authors

 The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Semigroup ideal in Prime Near-Rings with Derivations
...Show More Authors

In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
On Right (σ,τ)- Derivation of Prime Rings
...Show More Authors

Let R be a prime ring and δ a right (σ,τ)-derivation on R. In the present paper we will prove the following results:
First, suppose that R is a prime ring and I a non-zero ideal of R if δ acts as a homomorphism on I then δ=0 on R, and if δ acts an anti- homomorphism on I then either δ=0 on R or R is commutative.
Second, suppose that R is 2-torsion-free prime ring and J a non-zero Jordan ideal and a subring of R, if δ acts as a homomorphism on J then δ=0 on J, and if δ acts an anti- homomorphism on J then either δ=0 on J or J
Z(R).

View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Orthogonal Symmetric Higher bi-Derivations on Semiprime Г-Rings
...Show More Authors

   Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.

View Publication Preview PDF
Crossref (1)
Clarivate Crossref