This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermore, providing the necessary condition for α-feebly normality property to become hereditary. Also, using a new topological model for graphs are the edges represented as points which enables us to express in a topological language about combinatorial concepts. Moreover, showing that an α-connected orderable spaces are exactly α-topologized graphs. Finally, realizing the relationship between the α-topology on the vertex set and the once on the whole space by α-feebly regularity property.
In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Let be a module over a commutative ring with identity. Before studying the concept of the Strongly Pseudo Nearly Semi-2-Absorbing submodule, we need to mention the ideal and the basics that you need to study the concept of the Strongly Pseudo Nearly Semi-2-Absorbing submodule. Also, we introduce several characteristics of the Strongly Pseudo Nearly Semi-2-Absorbing submodule in classes of multiplication modules and other types of modules. We also had no luck because the ideal is not a Strongly Pseudo Nearly Semi-2-Absorbing ideal. Also, it is noted that is the Strongly Pseudo Nearly Semi-2-Absorbing ideal under several conditions, which is this faithful module, projective module, Z-regular module and content module and non-si
... Show MoreSome authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
In this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
Research studies show that urban green spaces promote physical activity, the health of urban residents, and psychological well-being. Taking the community park in Duhok city as the research object, the spatial service area in terms of accessibility of to the Community Park under the mode of pedestrian transportation is analyzed by using the network analysis service area function of the geographic information system (GIS). The results show that under the walking mode in the research area, Parks are concentrated in the north and south of the city, but community parks are few in disadvantaged neighborhoods. In addition, there is a significant disparity between the number of community parks and the number of communities. Only 11 communities
... Show MoreA submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
In this paper normal self-injective hyperrings are introduced and studied. Some new relations between this concept and essential hyperideal, dense hyperideal, and divisible hyperring are studied.