The thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, and 50°C were used to perform the test runs. Using water and nanofluids, the efficiency of the FPSC was found to increase with the increase in heat flux intensity and flow rate, and decrease with the increase in inlet fluid temperature. When applying nanofluids in the FPSC and as weight concentration and SSA increased, a reduction in the values of absorber plate temperature (AP) and tube wall temperature (TW) was observed down to 2.86% and 3.03%, respectively, while the FPSC’s efficiency increased up to 9.55% for 0.1-wt% Ala-MWCNTs < 8 nm at 1.4 kg/min, compared with water. Good agreement was obtained between the experimental values and MATLAB code predictions for AP, TW, and efficiency with maximum differences of 3.02%, 3.19%, and 3.26% for water, and 4.24%, 3.94%, and 12.64% for nanofluids, respectively. Consequently, the MATLAB code was judged suitable for modeling the nanofluid-based FPSC with suitable precision. It was proved that the positive effects of using nanofluids in the FPSC were higher their negative effects on pressure drop because all the calculated values of performance index (PI) were more than 1. As weight concentration and SSA increased, PI increased up to 1.095 for 0.1-wt% Ala-MWCNTs < 8 nm. Therefore, it was concluded that the nanofluids considered in this research can usefully be employed as working fluids in FPSCs for improved thermal performance, and the 0.1-wt% water-based Ala-MWCNTs < 8 nm nanofluid was fairly the distinguished one.
Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan
... Show Morein this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
A Photo Dynamic Therapy (PDT) is a technique which is used with Laser to treat many of cancer
tissues. This paper deals with the relatively new therapeutic technique (PDT) with pulsed Nd:glass Laser
which was applied to human soft tissues (Ovary and Kidney tissues), and to the hard tissues (freshly
extracted human teeth), with power density of 280 watt/mm2 and exposure time 330 usec. Different
dyes (Blue, methylene, eosin, and orange) were applied to the area before irradiation to study the effect
of the pigments on the laser interaction with biological tissues. The zone of treatment (Z-necrosis) with
aid of MATLAB was determined. The relationship of zone of treatment with exposure time,
accumulated damage and fracti
KE Sharquie, AA Noaimi, HA Al-Mudaris, Journal of Drugs in Dermatology: JDD, 2013 - Cited by 22
Machine scheduling problems (MSP) are considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio
... Show MoreWithin this research, The problem of scheduling jobs on a single machine is the subject of study to minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address the research problems, and some rules provide efficient (optimal) solutions to these problems. It has also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an effic
... Show MoreOptical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show More