Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info
... Show MoreIdentification by biological features gets tremendous importance with the increasing of security systems in society. Various types of biometrics like face, finger, iris, retina, voice, palm print, ear and hand geometry, in all these characteristics, iris recognition gaining attention because iris of every person is unique, it never changes during human lifetime and highly protected against damage. This unique feature shows that iris can be good security measure. Iris recognition system listed as a high confidence biometric identification system; mostly it is divide into four steps: Acquisition, localization, segmentation and normalization. This work will review various Iris Recognition systems used by different researchers for each recognit
... Show MoreRecently, biometric technologies are used widely due to their improved security that decreases cases of deception and theft. The biometric technologies use physical features and characters in the identification of individuals. The most common biometric technologies are: Iris, voice, fingerprint, handwriting and hand print. In this paper, two biometric recognition technologies are analyzed and compared, which are the iris and sound recognition techniques. The iris recognition technique recognizes persons by analyzing the main patterns in the iris structure, while the sound recognition technique identifies individuals depending on their unique voice characteristics or as called voice print. The comparison results show that the resul
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Iris detection is considered as challenging image processing task. In this study efficient method was suggested to detect iris and recognition it. This method depending on seed filling algorithm and circular area detection, where the color image converted to gray image, and then the gray image is converted to binary image. The seed filling is applied of the binary image and the position of detected object binary region (ROI) is localized in term of it is center coordinates are radii (i.e., the inner and out radius). To find the localization efficiency of suggested method has been used the coefficient of variation (CV) for radius iris for evaluation. The test results indicated that is suggested method is good for the iris detection.
Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show MoreIris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature
... Show MoreIn recent years, the iris biometric occupies a wide interesting when talking about
biometric based systems, because it is one of the most accurate biometrics to prove
users identities, thus it is providing high security for concerned systems. This
research article is showing up an efficient method to detect the outer boundary of
the iris, using a new form of leading edge detection technique. This technique is
very useful to isolate two regions that have convergent intensity levels in gray scale
images, which represents the main issue of iris isolation, because it is difficult to
find the border that can separate between the lighter gray background (sclera) and
light gray foreground (iris texture). The proposed met
Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
This paper deals with reducing the size of image, namely reducing the number of bits required in representing the