Preferred Language
Articles
/
ERZPgYcBVTCNdQwCgFSg
Iris recognition using localized Zernike features with partial iris pattern
...Show More Authors

Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition
...Show More Authors

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jan 01 2005
Journal Name
Iraqi Journal Of Science
Comparison between Zernike moment and central moments for matching problem
...Show More Authors

Moment invariants have wide applications in image recognition since they were proposed.

Publication Date
Tue Nov 21 2017
Journal Name
Lecture Notes In Computer Science
Emotion Recognition in Text Using PPM
...Show More Authors

In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using Wavelet Network
...Show More Authors

 

            This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.

 

 

View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Directive and Steerable Radiation Pattern using SASPA Array
...Show More Authors

This work examines the ability of a special type of smart antenna array known as Switched Active Switched Parasitic Antenna (SASPA) to produce a directive and electronically steerable radiation pattern. The SASPA array consists of antenna elements that are switchable between active and parasitic states by using P-Intrinsic-N (PIN) diodes. The active element is the element that is supplied by the radio frequency while short-circuiting the terminals of an element in the array results in a parasitic element. Due to the strong mutual coupling between the elements, a directional radiation pattern with high gain and a small beamwidth can be produced with only one active element operating at a time. By changing the parasitic state to the active

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Advanced Computer Science And Applications
Face Detection and Recognition Using Viola-Jones with PCA-LDA and Square Euclidean Distance
...Show More Authors

View Publication
Crossref (27)
Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
A Comparative Analysis of the Zernike Moments for Single Object Retrieval
...Show More Authors

Zernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Numeral Recognition Using Statistical Methods Comparison Study
...Show More Authors

The area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.

View Publication Preview PDF
Crossref