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Abstract  

Linear programming currently occupies a prominent position in various fields and has wide 

applications, as its importance lies in being a means of studying the behavior of a large number 

of systems as well. It is also the simplest and easiest type of models that can be created to 

address industrial, commercial, military and other dilemmas. Through which to obtain the 

optimal quantitative value. In this research, we dealt with the post optimality solution, or what 

is known as sensitivity analysis, using the principle of shadow prices. The scientific solution 

to any problem is not a complete solution once the optimal solution is reached. Any change in 

the values of the model constants or what is known as the inputs of the model that will change 

the problem of linear programming and will affect the optimal solution, and therefore we need 

a method that helps us to stand on the impact of changing these constants on the optimal 

solution that has been reached. General concepts about the binary model and some related 

theories have also been addressed. By analyzing the sensitivity, we relied on real data for a 

company that transports crude oil and its derivatives. The mathematical model was formulated 

for it and the optimal solution was reached using the software. Ready-made sop WINQSB and 

then calculate the shadow price values for the binding constraints, in addition to what  

Keyword: Linear programming, dual model, shadow prices, sensitivity analysis, fuzzy 

numbers           . 

 المستخلص:

تحتل البرمجة الخطية في الوقت الحاضر مركزاً مرموقاً في مجالات مختلفة ولها تطبيقات واسعة , اذ تكمن اهميتها       

بكونها وسيلة لدراسة سلوك عدد كبير من الانظمة كذلك فانها تعد ابسط واسهل انواع النماذج التي يمكن انشاؤها لمعالجة 

مجموعة من الاساليب الفنية التي يمكن بواسطتها الحصول على المقدار  معضلات صناعية وتجارية وعسكرية واخرى ,فهي

 Sensitivityاو ما يعرف بتحليل الحساسية  post optimalityالكمي الامثل.في هذا البحث تعاملنا مع الحل ما بعد الامثلية  

Analysis  باستخدام مبدء اسعار الظلShadow Prices  يكون حلاً كاملاً بمجرد الوصول ,ان الحل العلمي لاي مشكلة لا

الى الحل الامثل , ان اي تغيير في قيم ثوابت النموذج او ما يعرف بمدخلات النموذج الذي سيغير من مشكلة البرمجة الخطية 

وسيؤثر على الحل الامثل وعليه نحن بحاجة الى اسلوب يساعدنا في الوقوف على اثر تغير هذه الثوابت على الحل الامثل 

م التوصل اليه , كذلك تم تناول مفاهيم عامة عن النموذج الثنائي وبعض النظريات المتعلقة بتحليل الحساسية واعتمدنا الذ ت

على بيانات حقيقية لشركة تنقل النفط الخام ومشتقاته وقد تم  صياغة النموذج الرياضي لها والتوصل للحل الامثل باستخدام 

, اضافة لما  binding constraintsم حساب قيم اسعار الظل للقيود المستنفدةومن ث winqsbبرنامج الحاسوب الجاهز 

ذكر اعلاه فقد استعرضنا في هذا البحث نموذج البرمجة الخطية في ظل البيئة الضبابية واستخدم فيه اسلوب جديد يعتمد على 

 في حل معالم النموذج الضبابية. prime numbersالاعداد الاولية 

 الكلمات المفتاحية: البرمجة الخطية ,النموذج الثنائي,اسعار الظل, تحليل الحساسية,الاعداد الضبابية .
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1. Introduction 

The fact that linear programming is currently generally recognized as a helpful technique in 

operations research, management science, and other sciences is one of its benefits. Numerous 

businesses employ this kind of modeling to address a variety of real-world issues, including 

those relating to allocation issues, production mix issues, transportation issues, and challenges 

with planning production. The research problem's choice variables have linear relationships, 

which is the Linear Programming Problem (LPP) [1] the decision variables can be constrained 

to a certain solution area by various constraints, and the linear objective function (for example) 

is determined by maximizing profits or minimizing costs. The binary or corresponding model, 

which has a helpful economic explanation and is frequently utilized in economic theory, is one 

of the intriguing aspects of linear programming. Theoretically significant, it also touches on 

the topic of sensitivity analysis in linear programming, and it is generally known that in linear 

programming, the best values of binary model variables are seen as the shadow prices (border 

values) of the coefficients on the right side of the constraints. On the basis of optimization, 

Simplex has been well developed because it involves less computational work and  many 

studies and books, including  [2], have used this technique. 

The validity of shadow pricing and how they could be determined with or without pre-made 

programs were reviewed in 2000 by James K. [3]. He also discussed some of the well-known 

outcomes in this area. Furthermore, in 2005 Jan Staller [4] presented a study in which he 

demonstrated how to alter the ideal solution when the right side changed. He explained the 

origin of the issue, how his proposed solution used the pivoting algorithm method and the 

relationship with the interior-point method's post-optimization outcomes to establish the best 

change vector as a change in the amounts of resources that were accessible, [5] 

2. Dual Modeling  

The target function of the model or the value of the optimal profits are both equal to the value 

of the available economic resources, valued at shadow prices. Whether it seeks to maximize or 

reduce a particular function is related to the idea of the binary model that supports the original 

model. In the event that the binary model contains fewer constraints and variables than what is 

present in the original linear model of the problem, the binary model offers management a 

wealth of information that aids in decision-making, lowers calculations, and saves time and 

money [5] . 
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Since the primary objective of the original linear model was to maximize marginal profits, this 

marginal profit is the return on variable costs, or the difference between the selling price of 

goods and their variable expenses. And outputs (price of goods), and hence their profits. In 

light of this, since the original model seeks to maximize profits and is concerned with selecting 

the best production assortment (outputs) in light of constrained economic resources or inputs, 

and thus profits cannot be maximized without these resources. The binary model seeks to 

reduce these readily available resources that aid in generating profits and to determine the 

shadow prices of these resources under fundamental constraints that demand that the cost of 

the resources required for each product at its shadow prices be greater than the marginal profit 

for each product. The binary model therefore aims to identify and lower the shadow pricing of 

the readily available economic resources. 

The binary model is built from the standard formula for the inequalities of the linear 

programming model, as shown in the table below in the form of matrices: 

Dual modeling Original modeling 

Minimize⁡𝑧𝐷= 𝑏𝑇π 
s.t 

𝐴𝑇 𝑏≥ 𝑐𝑇 
Y ≥0 

Maximize⁡𝑧𝑝=𝑐 x     

s.t 

𝐴x≤b 
x ≥0 

 

Such that 

A: comparable to the technical coefficients matrix for a linear model with m rows and n 

columns c, 

X: vectors of unknown variables with dimension n. 

Y: vectors of unknown variables for the duality problem. 

C: vector with n coefficients in binary modeling. 

B: vector with m arbitrary values. 

There are numerous connections between the outcomes of the initial model and the binary problem, 

and these connections are crucial for understanding the outcomes. As x represents any value 

alternative to the initial model, Paul A. Jensen & Jonathan F. Bard in 2002 [6]  went as far as to 

regard these relationships as theorems with their proofs. And that is any viable answer for the 

binary model, x*, as well as, if any, the best answers for each of the two models discussed above. 
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Theorem 1(weak duality)  [7] 

If the acceptable solution is represented by x, 𝑍𝑝(𝑥)  is the value of the objective function that 

is (Maimize) for the original model, the acceptable solution is represented by, and z D (x) is 

the value of the objective function that is (Minimize) for the binary model, then z p (x)  ≤𝑧𝐷 (𝑥)    

is the value of the objective function that is (Minimize) for the binary model, then 

1-  zp (x)  ≤ zD(x). Hypothesis Ax < b accepts the prototype's solution as correct. 

2- The result of multiplying both sides by 𝜋 of the previous equation by is 𝐴𝑥𝜋 ≤ 𝑏 𝜋. 

3- The assumption 𝐴 𝜋 ≥  𝑐 accepts the answer for the relevant model. 

4- We obtain "Ax" by multiplying both sides of the previous equation by 𝜋𝐴𝑥 ≥ 𝑐𝑥. 

5- Steps 2 and 4's quotients are added to obtain cx≤Ax𝜋 ≤b𝜋 or 𝑍𝑃  (x)≤ 𝑍𝐷  (x).  

The above hypothesis leads to a number of practical relationships. 

-  The value of 𝑍𝑝 (x) for any x is the lower bound of 𝑍𝐷  (𝜋∗).  

- The value of  𝑍𝐷(𝑥)for any π is the upper bound of 𝑍𝑃(𝜋∗). 

If there are acceptable solutions for x and the original problem is unbounded, then the solution 

is no feasible for the binary problem  𝜋. 

If there are acceptable solutions to 𝜋 and the binary form is unbounded, then the solution is no 

feasible for the original problem  𝑥. 

Theorem 2(Sufficient Optimality Criterion)  [7]  

Assume that the binary model's objective function is 𝑧𝐷(x) and the prototype's objective 

function is 𝑧𝑝(x). If 𝑥  a pair of feasible solutions for the prototype and the binary model 

achieves 𝑧𝑝(𝑥̂ ) =𝑧𝐷  (𝜋̂) , then x is the prototype's optimal solution and is the binary model's 

optimal solution 

1. Determine the optimization of the initial solution: 𝑧𝑝 (𝑥  ) ≤ 𝑧𝑝(𝑥 ∗). 

2. The accepted solution of the binary form for  𝑧𝑝, 𝑧𝑝 (𝑥̂ ) ≤ 𝑧𝑝 (π*). 

3. Determine the optimization of the binary solution: 𝑧𝐷  (π* )≤𝑧𝐷  (𝜋̂). 

4. Adding up the above steps: 𝑧𝑝(𝑥̂ ) ≤ 𝑧𝑝(x*) ≤ 𝑧𝐷  (π*) ≤ 𝑧𝐷  (𝜋̂). 
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5. Suppose objective functions: 𝑧𝑝 (𝑥̂ ) = 𝑧𝐷(𝜋̂). 

6. Combining steps 4 and 5: 𝑧𝑝 (𝑥̂ ) =𝑧𝑝 (x*) =𝑧𝐷  (π*) =𝑧𝐷  (𝜋̂). 

So 𝑥̂ , 𝜋̂  is optimal. 

We come out with some conclusions from the previous theorem: 

- If the two objective functions are equal, then both solutions that are acceptable for both the 

initial and binary models are optimal. 

- If x* is an optimal solution for the prototype, there is a finite optimal solution for the binary 

model with the objective function 𝑧𝑝(𝑥 ∗) 

- If π* is an optimal solution for the binary model, there is a finite optimal solution for the 

prototype with a target function 𝑧𝐷  (π*).  

Theorem 4: (Strong Duality)  [7] 

The values of the goal functions for the two models are equivalent if either the initial or binary 

model has a workable optimal solution. To put it another way, allow the basic model to have 

an ideal outcome x*= (𝑥1*,𝑥2*…𝑥𝑛*), and the binary model has an optimal solution also π*= 

(𝜋1*,𝜋2*…𝜋𝑛*), then ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑖=1 * = ∑ 𝑏𝑗𝑥𝑗

𝑚
𝑖=1 *  

Theorem 5 :( Shadow Prices) [7]  

 The standard approach of resolving the linear programming model the shadow prices and 

opportunity cost, which are defined as the lost profits for the best alternative that comes after 

the chosen alternative or as an expected theoretical value for the alternatives abandoned as a 

result of choosing a specific alternative, are two examples of information that the simplex 

method provides that the graphic method does not. Three different sorts of these fees include: 

1. The cost of acquiring a unit of production resource from a source outside the production 

institution is one example of an external opportunity cost. 

2. The internal opportunity cost, which is the rate of return the institution can get in exchange 

for helping to pay its fixed costs and earn a profit. 

3. The total opportunity cost, which comprises the internal opportunity cost (the return obtained 

by the facility) and the external opportunity cost (the cost of getting the manufacturing 
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resource), is of obvious benefit in justifying the choice to add a new product to the production 

mix. 

The idea of a resource's shadow price can be summed up as the rise or fall in the value of the 

objective function as a result of an improvement or deficiency increasing the quantity of that 

resource that is readily available by one unit will result in higher marginal profitability.  

1. The indirect method (by-product method): The values that appear under the Slack Variables 

in the best possible simplex table for the (original) LPP [8] can be used to determine the shadow 

pricing. 

2. Binary model approach: Shadow prices are produced by converting the initial issue of the 

LPP into a binary model, which primarily seeks to ascertain the shadow price of the available 

economic resources. 

The rate of change in the objective function as a result of a change in the value of the resource 

(𝑏𝑖), sometimes referred to as the right side of the constraint, is the shadow price of a constraint, 

let it be 𝐼(𝑖). When the objective function in the initial model is identical to the objective 

function in the binary model, the value of the objective function in the best solution is 

represented as follows  [2]. 

Since Z*=v*=𝑏𝑇* and the initial solution is described as a non-degenerate one, this connection 

can be utilized to display the cost associated with 𝑏𝑖  at the ideal value (*). This idea states that 

the partial derivative of the function Z with respect to 𝑏𝑖 , which is expressed as ∂Z/ (∂𝑏𝑖)=𝜋*, 

can be used to determine the value of the change in Z as a result of a change in the resource 

(𝑏𝑖). 

The price connected to the right-hand side of the constraint, also known as the shadow price, 

can be inferred from the definition above, which is credited to Paul Samuelson in 1965 [9] 

3. Economic Interpretation of Shadow Prices 

The simplex method's goal is to identify the fundamentally workable solution that employs the 

most economical technique. The whole cost, i.e., is represented by the binary model's objective 

function. 

v=𝜋𝑇 b = ∑ 𝜋𝑖𝑏𝑖 
𝑚
𝑖=1  ….. (1) 
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Since * indicates the implicit income to cover the direct costs (shadow price) for each resource 

in light of the initial basic variables, 𝐼 𝑏𝑖  is the compensation for the direct costs. Where 𝜋𝑖𝑏𝑖 

is the factorial of the simplex associated with the basic variables. ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  

By studying each row (𝑗) of the binary problem that corresponds to column (𝑗) of the initial 

problem and applying the aforementioned interpretation of the objective function and variables 

of the binary model, 𝑣, we can determine that each unit 𝑗 of activity (or product) in the initial 

problem 𝑎𝑖𝑗  consumes a unit of resource 𝑖 

The indirect implicit cost of the resource mix used or produced by one unit of activity 𝑗, as 

determined by the binary problem's use of shadow pricing (the constraint's left side), is known 

as: 

∑ 𝑎𝑖𝑗𝜋𝑖
𝑚
𝑖=1           …. (2) 

Since the direct cost per unit of activity in the binary problem is derived from constraint 𝑐𝑗 the 

constraint j in the binary form  

∑ 𝑎𝑖𝑗𝜋𝑖 ≤  𝑐𝑗
𝑚
𝑖=1    …. (3) 

Can be thought of as including implicit indirect costs. For the materials consumed by activity 

𝑐𝑗and must not exceed the direct expenses 𝑐𝑗  if these costs are exactly less than 𝑐𝑗 , he is not 

compensated for participating in the activity 𝑐𝑗   

∑ 𝑎𝑖𝑗𝜋𝑖 >𝑚
𝑖=1  𝑐𝑗   …. (4) 

On the other hand, the constraints in the binary form associated with the non-basic variables 

𝑥𝑁, may fulfill the acceptable or unacceptable solution, and this means 𝐶̅=𝐶𝑁-𝑁 𝑇 π , as it can 

be 𝐶̅𝑗 ≥ 0 then the constraint in the binary form is acceptable or 𝐶̅𝑗< 0, then the restriction is not 

acceptable. From an economic point of view, 𝐶̅𝑗< 0 means that activity j uses resources more 

economically than any other activity out of the sum of activities 

4. Sensitivity Analysis 

Sensitivity analysis is a technique that assesses the impact of changes in the decision model's 

inputs on its outputs. Through this technique, it is possible to examine changes in the values of 

the model constants and determine how much these constants can vary before the previously 
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specified optimal solution becomes suboptimal. The greater the degree of sensitivity of the 

decision to change, the more these constants can vary before this happens. When one of the 

model's constants must be carefully estimated in order to avoid deviating from the ideal later, 

this takes additional time and effort. Post-optimization analysis is another name for sensitivity 

analysis [10]. The majority of real-world issues involve data that is not known for sure, for 

instance, the cost of raw materials may vary after the model is solved or the costs utilized may 

just be an educated guess as to what will be in the future [11]. The right-hand side of the 

constraint may change as a result of a rise or fall in the amount of resources on the market or 

transactions that may alter as a result of modifications to product specifications. Sensitivity 

analysis is crucial for a number of reasons [12]: 

1. Considering the modifications to the model's parameters, the stability of the optimal solution 

might not be acceptable. 

2. It is possible to modify the values of the constraints and the coefficients of the objective 

function to some extent at some costs; in this case, we are interested in the consequences of 

doing so as well as the associated costs. 

3. Since the values of uncontrolled transactions may be approximations, it's critical to 

understand how much they change over time in order to maintain the best solution or produce 

more accurate estimates 

A. Insert (Add) A New Variable [15]: 

Sensitivity analysis is helpful in assessing whether it is feasible to add a new variable to the 

solution that has already been reached (without this variable) and whether or not doing so 

would have an impact on the optimization of the original solution [13]. 

The linear programming model is as follows: After determining the best solution, x=x*, let's 

add a new variable, 𝑥𝑛+1, with cost coefficient  𝑐𝑛+1 and technical coefficients 𝐴𝑛+1 about 

following: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑐𝑇𝑥 + 𝑐𝑛+1𝑥𝑛+1 

𝑠. 𝑡                                                                

                        𝐴𝑥 + 𝐴𝑛+1𝑥𝑛+1 = 𝑏                       …. (5) 
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𝑥𝑖 ≥ 0 , 𝑥𝑛+1 ≥ 0 

The accepted solution does not change when a new variable is added to the model since it 

becomes a non-essential variable and its value is zero at the lower bounds. However, the 

solution must be optimal because the cost of lowering𝑐̅𝑛+1 to correspond to the new variable 

𝑥𝑛+1 is high. It might be negative, and in order to be sure the best answer was reached, we 

compute 

𝑐̅𝑛+1 = 𝑐𝑛+1 − 𝐴𝑛+1
𝑇  𝜋   ….. (6) 

The previous solution, which had the variable 𝑥𝑛+1 equal to 0, is the best one if 𝑐𝑛̅+1 _𝑐𝑛+1 −

𝐴𝑛+1
𝑇 ≥ 0 , but if 𝑐̅𝑛+1< 0, the solution can be improved by making the 𝑥𝑛+1variable basic. 

The most typical scenario is when the new variable 𝑥𝑛+1 has lower and upper limits, but neither 

of them must be zero 𝑙𝑛+1 ≤ 𝑥𝑛+1 ≤ 𝑢𝑛+1. The maximum value is ∞. 

B .Entering (Adding) A New Entry [13]: 

If we assume that after finding the best solution, the need to add a new entry might arise due 

to a change in the environment of the producing institution, which led to a change in the 

specifications of some of the resources available and changed that product, it is obvious that 

the added restriction will not widen the solution space. On the other hand, the accepted one 

may be subtracted from it. As a result, the goal function that was achieved before the new 

constraint was introduced either stays the same or begins to deteriorate. Let's say the constraint 

that needs to be added has the form: 

𝐴𝑚+1𝑥 = 𝑏𝑚+1, 

𝐴𝑚+1𝑥 ≤ 𝑏𝑚+1  ,    

                                  𝐴𝑚+1𝑥 ≥ 𝑏𝑚+1                  ... (7) 

s.t 𝑏𝑚+1 ≥ 0.  

Any of the aforementioned restrictions can be expressed in the following way by imposing 

various limits on the variable 𝑥𝑛+1: 

𝐴𝑚+1𝑥 + 𝑥𝑛+1  = 𝑏𝑚+1,     …. (8) 

If "𝑏𝑚+1" then 0 ≤ 𝑥𝑛+1 ≤ 0 , if "𝑏𝑚+1" >  then 0 ≤ 𝑥𝑛+1 ≤ ∞ and 0 ≥ 𝑏𝑚+1 
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Then −∞ ≤ 𝑥𝑛+1 ≤ 0 When a new constraint is added, the cost 𝑐𝑛+1 associated with the 

variable 𝑥𝑛+1 is zero, but what if the solution x*=x is not acceptable? If so, the model is solved 

and enhanced [14] 

C. Change in the Right Side of the Constraints: 

 It is important and necessary to be able to study the impact of changes that occur on the right 

side of the constraints, particularly those that determine what resources are available. Assume 

that we have the best solution for the linear programming model in the standard form and that 

the right side of the constraint (q) is given by the parameter (λ) and with a given value 𝑏𝑞: [15] 

𝑏(λ) = 𝑏 + (λ − 𝑏𝑞)𝑒𝑞     ….. (9)   

Where 𝑒𝑞  represents the column (q) in the neutral matrix. The updated basic solution continues 

to be the best option if the value λ of the parameter does not render the basic solution 

inacceptable. 

he range of parameter values λ is on the right side of the constraint q, which keeps the basic 

solution acceptable and optimal, by finding the values of 𝑥B (λ) where 

𝐵𝑥𝐵(λ ) =  𝑏(λ)                    …. (10) 

                               And            𝑥𝐵(λ ) ≥ 0 we get 

𝑥𝐵(λ ) = 𝐵−1𝑏 + (λ − 𝑏𝑞)𝐵−1𝑒𝑞  = 𝑥𝐵
∗ + (λ − 𝑏𝑞)𝐵−1𝑒𝑞 

Since xB* represents the optimal solution when λ = bq, and to reach the accepted solution it is 

required that  xB (λ) ≥0, and the field of the parameter λ is calculated according to the formula 

below: 

𝑏𝑞 + max
𝛽𝑖𝑞>0

−(𝑥𝐵
∗ )𝑖

𝛽𝑖𝑞
≤ λ ≤ 𝑏𝑞 + min

𝛽𝑖𝑞<0

−(𝑥𝐵
∗ )𝑖

𝛽𝑖𝑞
  …..   (11) 

Where  𝐵𝑖𝑞 represents the element (𝑖, 𝑞) of the matrix 𝐵− 

5. Fuzzy Linear Programming  

The concept of fuzzy logic is one of the forms of logic, as it is used in some expert systems and 

artificial intelligence applications. The Azerbaijani scientist Lutfi Zadeh invented this method 

in 1965 [9], where he developed it to use it as a better way to process data, but his theory did 
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not receive attention until 1974, when it was used in Steam engine regulation, then evolved to 

be used in many scientific, engineering and other applications.  

Definition 1: The pair set A
~

, also known as the function )}),({(
~

~ xxA
A

  of belonging to the 

fuzzy set X, ]0,1[:)(~ Xx
A

  is a subset of the universal set. The value of the affiliation 

function of the element is called )(~ x
A

  the degree of affiliation [15]. 

 - cA
~

 The complement of the fuzzy function A
~

,-  which is symbolized by it, and it is a fuzzy 

group that can be written Xxxx
AAc   ),(1)( ~~  . 

-Intersection of two fuzzy sets A
~

B , to define C
~

write as: 

Xxxxx
BABAC




 )),(),(min()( ~~~~~    ….. (12) 

- Union of two fuzzy sets A
~

B ,  s.t define C
~

 write as : 

Xxxxx
BABAC




 )),(),(max()( ~~~~~      ….. (13) 

Definition 2: The fuzzy set 𝐴̃ is convex if the condition is set  1,0,,  Xyx , [15]. 

))(),(min())1(( ~~~ yxyx
AAA

                    .….(14)   

Definition 3: fuzzy number is pair of functions )),(),(( rvru  0,1r satisfy the following 

condition, [15]. 

1. )(ru Is a definite decreasing function from the left lies within the interval [0, 1]? 

2. )(rv  Is a definite decreasing function from the right lies within the interval [0, 1]? 

3. )(rv  < )(ru   0,1r . 

Definition 4: suppose that A
~

fuzzy number in trigonometric form (a, b, c) the affiliation 

function can be calculated )(~ x
A

  as [15], 

      caxxcbx
bc

xc
xbax

ab

ax
x

AAA
,,0)(,,,)(,,,)( ~~~ 









      ….(15) 

Fuzzy number in trigonometric form as function: 

         1,/,)( cbr
bc

rcc
rv 




 ,  cbcar /,/  ,)(

ab

acr
ru




                            …. (16) 
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6. Using the Prime Numbers in the Era to Create the Fuzzy Number ],[ 21 kk  [16] 

Definition 5: Let it be the prime number 0)( aPj
, 0a , Zj ∈ [a,∞) when 0j or [0, a) 

j<0, 0)( aPj
prime number from prime numbers set a > 0, [15]. 

1- The following list of a prime number's crucial characteristics is an overview: 

𝑃0(0) = 0 , 𝑃1(0) = 0,, )0(1 1P 0),1(1 P .           ….. (17) 

2-  𝑃0(𝑎) = 𝑎 if  a > 0 prime number , )(0 aP not found if  a > 0  non-prime number      

 3. )()( aPaP kj    if kj  , ),()( aPaP kj   for all Zj , kj  ,, Zk . 

.0a ,)()(1 1 aPaPl jj  ,.for all,...2,1,0j   -4)(...)1()( laPaPaP jjj  

5- If 0a prime number.   ))(()( 11 aPPaP jj ))((...))(()))((( 1122211 aPPaPPaPPP jjj    

 Definition 6: let fuzzy number n~ called tripe fuzzy number (k, n, l),  lnk  , Zlnk ,,  

                        Such that, [15]. 










 ,0),(

,0),(

1

1

nnP

nnP
l  












,0),(

,0),(

1

1

nnP

nnP
k           ... (18)  

)(),( 11  PP The preceding and subsequent (initial) number of the 0n , n , 0n  

According to the above formula with the use of the linear affiliation function: 

 nkx
kn

kx
xn ,,)(~ 




 ,  lnx

nl

xl
xn ,,)(~ 




 ,  lkxxn ,,0)(~      ... (19) 

Using the definition of fuzzy integers, the traditional arithmetic operations (addition, 

subtraction, multiplication and division) for any two fuzzy integers m~ , n~ . It is given as fuzzy 

trigonometric numbers  nn lnk ,, ,  mm lmk ,, both straight: 

1. n~  + m~  =    lmnk ,, ,  












,0),(

,0),(

1

1

mnmnP

mnmnP
k   













,0),(

,0),(

1

1

mnmnP

mnmnP
l  

2 . n~  - m~  =    lmnk ,, , 












,0),(

,0),(

1

1

mnmnP

mnmnP
k   













,0),(

,0),(

1

1

mnmnP

mnmnP
l  

3. n~  * m~  =  ** ,*, lmnk , 











,0*),*(

,0*),*(

1

1

*
mnmnP

mnmnP
k   










 ,0*),*(

,0*),*(

1

1

*
mnmnP

mnmnP
l  
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4. n~  / m~  =  divdiv lmnk ,/, , ,0m    











,0/),/(

,0/),/(

1

1

mnmnP

mnmnP
kdiv

  









 ,0/),/(

,0/),/(

1

1

mnmnP

mnmnP
ldiv

 

5. n~  % m~  =  modmod ,%, lmnk , ,0,0  mn     












,0%),%(

,0%),%(

1

1

mod
mnmnP

mnmnP
k   










 ,0%),%(

,0%),%(

1

1

mod
mnmnP

mnmnP
l  

It is necessary to draw attention to one of the important details, including calculating the prime 

numbers related to any number 0a  , at the same time calculating the prime numbers )(1 aP  

and )(1 aP , that the representation of any fuzzy k
~

 integer depends on K and is characterized by 

the features of the belonging function, so the representation period is unknown (fuzzy values ) 

. The fuzzy trigonometric numbers   21 ,,
~

kkkk   with belonging functions can be considered 

as a group of triangles; the prime numbers 21,kk  are calculated according to the following 

formula the company's production data:  ),(),( 1211 kPkkPk   . 

7. Case Study in the Field of Oil 

The information below was taken from Bhumik [17], a significant integrated oil company that 

imports the remaining oil to meet its needs and imports the majority of its oil. Bhumik also has 

a vast distribution network that is used to transport oil to refineries and then oil products from 

refineries to distribution centers, which are located in a variety of places. In addition, RJ 

Vanderbei [18], the mathematical and physical practical applications of sensitivity analysis but 

the geometric dimension are presented. In Table 1, these facilities are listed (1). 

The management of the company has decided to enhance its output by constructing an 

additional refinery along with an increase in its crude oil imports in order to increase market 

share from its primary products. The choice of where to put the new refinery is crucial. On how 

the distribution system is running including decisions regarding the amount of crude oil that 

may be transported from each source to each refinery, as well as the amount of the finished 

product that can be transported from each refinery to the distribution centers. As a result, the 

three primary criteria used by management to determine where to locate the new refinery are: 

. The cost of transporting crude oil from the sources to all the new refineries.1 

2. The cost of transporting the final product from the refineries to the distribution centers. 

https://scholar.google.com/citations?user=3mXqzKcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=3mXqzKcAAAAJ&hl=en&oi=sra


14 
 

3.The costs of operating the new refinery, including labor costs, taxes, guarantees, the effect of 

financial incentives provided by the state or the city, as well as the capital costs, because they 

will be the same in any available location. After verification, the concerned working group 

found that there are three locations (Los Angeles, Galveston, and Missouri), has major 

advantages shown in Table (2), and Table (3) Shows: 

Table (1):  The Current Locations of the Company's Facilities 

Locations Facility type 

1.Texas/   2.California/     3.Alaska Oil Fields 

1. Near New Orland/ 2.Near South Carolina/ 3.Near Seattle/Washington Refineries 

1. Pittsburgh, Pennsylvania / 2. Atlanta, Georgia / 3. Kansas City, Missouri 

4. San Francisco, California 
Distribution Centers 

 

Table (2): Available Locations for the New Refinery, with the Advantages Of Each Location 

Available sites Main advantages 

Near Los Angeles, California 
1. Close to California Oilfields/ 2. Easy access to Alaska Oilfields/ 

3. Fairly close to San Francisco Distribution Center 

Near Galveston 
1. Near Texas oil fields/ 2. Easy access to imported oil/ 3. Close to 

the company's headquarters 

Near Missouri 
1. Low operating costs/ 2. Central location for distribution sites/ 

3. Easy access to crude oil by the Mississippi River 

 

Table (3):  Shows the Company's Production Data 

 

Annual production of crude 

oil per oil field 

(barrels/million)  

oil fields 

 

The annual needs of the 

refinery of crude oil (barrels 

/ million) 

Filtered 

80 

60 

100 

1.Texas 

2. California 

3. Alaska  

011 

01 

01 

021 

1. New Orlando 

2. South Carolina 

3. Seattle/Washington 

4. New 

The total needs of the importer 360-240 = 120 

 

001 
Total 
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To do the necessary analysis on the data, the work team must gather a lot of it. The 

administration desires that all refineries function at maximum output. The work team's 

responsibility is to determine the annual crude oil requirements for each refinery because the 

amounts of crude oil produced or the team came to the conclusion that, with the exception of 

transportation charges, the costs of production or purchase are unrelated to the choice of the 

refinery's new location because the customer will remain the same regardless of the location. 

On the other hand, the expenses associated with moving crude oil from the sources to the 

refineries are crucial is shown in Table 4. The cost of shipping crude oil from refineries to 

distribution centers is shown in Table 5 for all three planned refineries, and the bottom row of 

the table lists the quantity of the finished product that is required by each distribution center. 

In addition to the previously mentioned, the third and final major aspect of the data focuses on 

operating costs for each refinery in each of the three sites that will be established in it. Cost 

estimation necessitates field visits by numerous team members to gather detailed information 

about local labor costs, and tasks. The land assignment and other matters are enumerated in 

Table (6): 

Table (4): The Cost of Shipping Crude Oil from Sources to Refineries 

Shipping cost (in million dollars / per million barrels) from the fields to the refineries, including 

the proposed sites 
Cites 

Missouri Galveston Los Angeles Seattle Charleston NBO Orlando  

7 0 0 5 4 2 Texas 

4 0 0 0 5 5 California 

7 5 4 0 7 5 Alaska 

4 0 4 5 0 2 importer 

 

Table  (5):  Costs of Shipping Each Item (In Million Dollars for Million Barrels) From Refineries to Distribution 

Centers 

San Francisco Kansas Atlanta Pittsburgh  

8 6 5.5 0.5 New  Orlando 

Refineries 7 4 5 7 Charleston 

3 4 0 7 Seattle Los 

2 3 0 0 Angeles 

Suggested 

Refineries 
6 3 4 5 Galveston 

5 1 0 4 Missouri 

100 80 01 011 Needs 
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Table (6): Refinery Operating Costs 

Annual operating costs (in millions of dollars) Location 

620 Los Angeles 

570 Galveston 

530 Missouri 

 

8. Constructing (Formulating) the Problem's Mathematical Model: 

Before developing the mathematical model for the aforementioned issue, it is necessary for us 

to establish a general understanding of either- Or restrictions, which follow the generic 𝐾 out 

of 𝑁 formula. This can be stated as [5]: 

∑  𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 − 𝑀𝑦𝑖       𝑓𝑜𝑟 𝑎𝑙𝑙     𝑖 = 1,2, … , 𝑚  ,    ∑ 𝑦𝑖

𝑁
𝑖=1 = 𝑁 − 𝐾   ….. (20) 

Where  𝑀 ≠  0, 𝑦𝑖𝜖 [0, 1] because the second condition connected to 𝑦𝑖  guarantees that the K 

of the original problem constraints will remain unaltered and the rest of the constraints will be 

removed. 

Define Decision Variables:  

 𝑥𝑖𝑗𝑘: The quantities transported of crude oil from field i to the j refinery, and the quantities 

transferred from the j refinery to the distribution centers k (annually). 

𝐶𝑖𝑗𝑘 : Transporting goods from refinery j to distribution centers in addition to the shipping 

charges from field I to refinery j. 

𝛿𝑖𝑗𝑘 :  Refinery operational cost suggested 𝐹𝑗 , binary variable.  

𝑖 = 1,2,3,4 , 𝑗 = 1,2,3, 𝐴 𝑂𝑅 𝐵 𝑂𝑅 𝐶 , 𝑘 = 1,2,3,4 

Objective function 

𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 +4
𝑘=1

3
𝑗=1

4
𝑖=1 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝛿𝑖𝑗𝑘𝑥𝑖𝑗𝑘 

4
𝑘=1𝑗∈{𝐴,𝐵,𝐶}

4
𝑖=1 +  𝐹𝑗𝛿𝑗        …. (21) 

                     1   if   𝑥𝑖𝑗𝑘 > 0 , 𝑗 ∈ {𝐴, 𝐵, 𝐶} , 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅  , 𝑘 = 1, 𝑝    ̅̅ ̅̅ ̅̅ ̅                                           

   𝛿𝑖𝑗𝑘=                                                                                                                        …… (22) 

                     0   if    ∄  (𝑥𝑖𝐴𝑘 > 0 , 𝑥𝑖𝐵𝑘 > 0 , 𝑥𝑖𝐶𝑘 > 0),                                                                                               
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𝑗 ∈ {𝐴, 𝐵, 𝐶} , 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅  , 𝑘 = 1, 𝑝 ̅̅ ̅̅ ̅                                                                                                    

                    1  if  𝛿𝑖𝑗𝑘=  1                  

   𝛿𝑗 =          0    Otherwise                                                                                       …….  (23) 

9. Restrictions on Imported and Crude Oil Fields 

∑ ∑ 𝑥1𝑗𝑘
4
𝑘=1

3
𝑗=1 + ∑ 𝑥1𝐴𝑘

4
𝑘=1 + 𝑀𝑦1  ≥ 80    , ∑ ∑ 𝑥2𝑗𝑘

4
𝑘=1

3
𝑗=1 + ∑ 𝑥2𝐴𝑘

4
𝑖𝑘=1 + 𝑀𝑦1  ≥ 60, .. (24) 

 ∑ ∑ 𝑥1𝑗𝑘
4
𝑘=1

3
𝑗=1 + ∑ 𝑥1𝐵𝑘

4
𝑘=1 + 𝑀𝑦2  ≥ 80    ,      ∑ ∑ 𝑥2𝑗𝑘

4
𝑘=1

3
𝑗=1 + ∑ 𝑥2𝐵𝑘

4
𝑘=1 + 𝑀𝑦2  ≥ 60     … (25) 

∑ ∑ 𝑥1𝑗𝑘
4
𝑘=1

3
𝑗=1 + ∑ 𝑥1𝐶𝑘

4
𝑘=1 + 𝑀𝑦3  ≥ 80     ,     ∑ ∑ 𝑥2𝑗𝑘

4
𝑘=1

3
𝑗=1 + ∑ 𝑥2𝐶𝑘

4
𝑘=1 + 𝑀𝑦3  ≥ 60        …. (26) 

∑ ∑ 𝑥3𝑗𝑘

4

𝑘=1

3

𝑗=1

+ ∑ 𝑥3𝐴𝑘

4

𝑘=1

+ 𝑀𝑦1  ≥ 100   ,     ∑ ∑ 𝑥4𝑗𝑘

4

𝑘=1

3

𝑗=1

+ ∑ 𝑥4𝐴𝑘

4

𝑘=1

+ 𝑀𝑦1  ≥ 120      

∑ ∑ 𝑥4𝑗𝑘
4
𝑘=1

3
𝑗=1 + ∑ 𝑥4𝐵𝑘

4
𝑘=1 + 𝑀𝑦2  ≥ 120 , ∑ ∑ 𝑥3𝑗𝑘

4
𝑘=1

3
𝑗=1 + ∑ 𝑥3𝐵𝑘

4
𝑘=1 + 𝑀𝑦2  ≥ 100 ,                                                                                                                                                                                                                                                                                                           

                                                                                                                                                        .. 

(27) 

∑ ∑ 𝑥3𝑗𝑘

4

𝑘=1

3

𝑗=1

+ ∑ 𝑥3𝐶𝑘

4

𝑘=1

+ 𝑀𝑦3  ≥ 100 , ∑ ∑ 𝑥4𝑗𝑘

4

𝑘=1

3

𝑗=1

+ ∑ 𝑥4𝐶𝑘

4

𝑘=1

+ 𝑀𝑦3  ≥ 120          

 

Refinery Capacity Restrictions 

 

∑ ∑ 𝑥𝑖1𝑘
4
𝑘=1

4
𝑖=1 = 100     , ∑ ∑ 𝑥𝑖2𝑘

4
𝑘=1

4
𝑖=1 = 60     , ∑ ∑ 𝑥𝑖3𝑘

4
𝑘=1

4
𝑖=1 = 80,                         ..          (28) 

∑ ∑ 𝑥𝑖𝐴𝑘
4
𝑘=1

4
𝑖=1 + 𝑀𝑦1  ≥ 120    , ∑ ∑ 𝑥𝑖𝐵𝑘

4
𝑘=1

4
𝑖=1 + 𝑀𝑦2  ≥ 120 ,    ∑ ∑ 𝑥𝑖𝐶𝑘

4
𝑘=1

4
𝑖=1 + 𝑀𝑦3  ≥ 120                                                                                                                                                     

Distribution Center Restrictions 

∑ ∑ 𝑥𝑖𝑗1

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐴1

4

𝑖=1

− 𝑀𝑦1  ≤ 100,   ∑ ∑ 𝑥𝑖𝑗2

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐴2

4

𝑖=1

− 𝑀𝑦1  ≤ 80        
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∑ ∑ 𝑥𝑖𝑗1

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐵1

4

𝑖=1

− 𝑀𝑦2  ≤ 100 ,   ∑ ∑ 𝑥𝑖𝑗2

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐵2

4

𝑖=1

− 𝑀𝑦2  ≤ 80             

∑ ∑ 𝑥𝑖𝑗1

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐶1

4

𝑖=1

− 𝑀𝑦3  ≤ 100, ∑ ∑ 𝑥𝑖𝑗2

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐶2

4

𝑖=1

− 𝑀𝑦3  ≤ 80         

∑ ∑ 𝑥𝑖𝑗3
3
𝑗=1

4
𝑖=1 + ∑ 𝑥𝑖𝐴3

4
𝑖=1 − 𝑀𝑦1  ≤ 80 , ∑ ∑ 𝑥𝑖𝑗3

3
𝑗=1

4
𝑖=1 + ∑ 𝑥𝑖𝐴3

4
𝑖=1 − 𝑀𝑦1  ≤ 100      (29) 

∑ ∑ 𝑥𝑖𝑗3

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐵3

4

𝑖=1

− 𝑀𝑦2  ≤ 100 , ∑ ∑ 𝑥𝑖𝑗4

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐵4

4

𝑖=1

− 𝑀𝑦2  ≤ 80     

∑ ∑ 𝑥𝑖𝑗3

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐶3

4

𝑖=1

− 𝑀𝑦3  ≤ 100, ∑ ∑ 𝑥𝑖𝑗4

3

𝑗=1

4

𝑖=1

+ ∑ 𝑥𝑖𝐶4

4

𝑖=1

− 𝑀𝑦3  ≤ 80      

        𝑦1 + 𝑦2 + 𝑦3 = 2, 𝑥𝑖𝑗𝑘 ≥ 0 , 𝑦𝑖 ∈ {0,1}  , 𝑖 = 1,2,3   𝑀 ≫ 0 

Using the ready-made computer program WINQSB, the results of the optimal solution were 

obtained (in units of measure, million barrels / year) as follows: 

𝑥111 = 35 , 𝑥1𝑐2 = 25, 𝑥234 = 60 , 𝑥323 = 5 , 𝑥1𝐶3 = 75  , 𝑥334 = 20 , 𝑥3𝑐4 = 20 , 𝑥411 = 65, 𝑥422 = 55    

The total annual cost = 2707 million dollars / year, and site C (Missouri) was chosen for the 

construction of the new refinery, which is to be entered within the company's expansion plan. 

10. Explanation of the Post-Optimal Solution 

One refinery capacity constraint with a shadow price of 8.5 means that if the value of this 

resource, represented by the capacity of the first refinery, is decreased by one unit from 100 to 

99, the objective function will improve (decrease) by 8.5 million dollars. On the other hand, if 

we take a constraint with a shadow price of (-3), it means that if the value of this resource, 

represented by the capacity of the second refinery, is decreased by one unit from 100 to 90. 

11. Conclusions 

In this article, we discussed a few topics connected to sensitivity analysis, which is also known 

as post optimality analysis. Administrations utilize this sort of analysis to respond to a number 

of hypothetical inquiries concerning the values used in the linear programming model, such as 

with this kind of analysis, it is determined how the profit and values on the right-hand side of 
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the constraint vary in relation to the best possible solution. The idea of prime numbers was also 

helpful to us in resolving the fuzzy linear programming model 
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