Preferred Language
Articles
/
alkej-816
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 12 2014
Journal Name
Wireless Personal Communications
A Multi-objective Disjoint Set Covers for Reliable Lifetime Maximization of Wireless Sensor Networks
...Show More Authors

View Publication
Scopus (19)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Estimation of rock strength from sonic log for Buzurgan oil field: A Comparison study
...Show More Authors

It is very difficult to obtain the value of a rock strength along the wellbore.  The value of Rock strength utilizing to perform different analysis, for example, preventing failure of the wellbore, deciding a completion design and, control the production of sand.  In this study, utilizing sonic log data from (Bu-50) and (BU-47) wells at Buzurgan oil field.  Five formations have been studied (Mishrif, Sadia, Middle lower Kirkuk, Upper Kirkuk, and Jaddala) Firstly, calculated unconfined compressive strength (UCS) for each formation, using a sonic log method.  Then, the derived confined compressive rock strengthens from (UCS) by entering the effect of bore and hydrostatic pressure for each formation.  Evaluations th

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Oct 20 2016
Journal Name
Sociological Methods & Research
Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
...Show More Authors

In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo

... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
A Hybrid Coefficient Decimation- Interpolation Based Reconfigurable Low Complexity Filter Bank for Cognitive Radio
...Show More Authors

Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 05 2007
Journal Name
Neural Network World
A canonical generic algorithm for likelihood estimator of first order moving average model parameter
...Show More Authors

The increasing availability of computing power in the past two decades has been use to develop new techniques for optimizing solution of estimation problem. Today's computational capacity and the widespread availability of computers have enabled development of new generation of intelligent computing techniques, such as our interest algorithm, this paper presents one of new class of stochastic search algorithm (known as Canonical Genetic' Algorithm ‘CGA’) for optimizing the maximum likelihood function strategy is composed of three main steps: recombination, mutation, and selection. The experimental design is based on simulating the CGA with different values of are compared with those of moment method. Based on MSE value obtained from bot

... Show More
Scopus (3)
Scopus
Publication Date
Thu Dec 01 2022
Journal Name
Advances In Cancer Biology - Metastasis
CX3CL1 as potential immunotherapeutic tool for bone metastases in lung cancer: A preclinical study
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution
...Show More Authors

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Sep 01 2014
Journal Name
19th International Conference On Methods And Models In Automation And Robotics (mmar) 2014
A PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots
...Show More Authors

Scopus (22)
Crossref (20)
Scopus Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation The Performance efficiency of the general company for lather Industries (a practical study)
...Show More Authors

The performa of evaluation process is a process that should be carried out by all industrial management in order to stand on aspects of development or underdevelopment of the various departments and activities in its industrial project for the purpose of identifying obstacles and find out the causes and then avoid them quickly. And intended to rectify the performance evaluation of the  activities of  industrial project  or economic union by measuring the results achieved within a specific operational process and compare it to what is already targeted, and often the time for comparison of one year.

The process of performance evaluation depends upon several criteria and indicators within the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref