Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreThis paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.
According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability
p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive
preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the
average durations of the preventive and corrective maintenance actions a
... Show MoreScientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show More