Preferred Language
Articles
/
alkej-816
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
A Hybrid Coefficient Decimation- Interpolation Based Reconfigurable Low Complexity Filter Bank for Cognitive Radio
...Show More Authors

Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition
...Show More Authors

View Publication
Scopus (126)
Crossref (126)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Fri Jul 28 2023
Journal Name
Journal Of Advanced Pharmaceutical Technology & Research
Development of a spectrophotometric analytical approach for the measurement of cefdinir in various pharmaceuticals
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Advances In Cancer Biology - Metastasis
CX3CL1 as potential immunotherapeutic tool for bone metastases in lung cancer: A preclinical study
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Heliyon
The preventive/therapeutic effect of CO2 laser and MI Paste Plus® on intact and demineralized enamel against Streptococcus mutans (In Vitro Study)
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Using Ultraviolet Technique for Well Water Disinfection
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Database for Baghdad Soil Using GIS Techniques
...Show More Authors

teen sites Baghdad are made. The sites are divided into two groups, one in Karkh and the other in Rusafa. Assessing the underground conditions can be occurred by drilling vertical holes called exploratory boring into the ground, obtaining soil (disturbed and undisturbed) samples, and testing these samples in a laboratory (civil engineering laboratory /University of Baghdad). From disturbed, the tests involved the grain size analysis and then classified the soil, Atterberg limit, chemical test (organic content, sulphate content, gypsum content and chloride content). From undisturbed samples, the test involved the consolidation test (from this test, the following parameters can be obtained: initial void ratio eo, compression index cc, swel

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Thu Oct 18 2018
Journal Name
Proceedings Of The Future Technologies Conference (ftc) 2018
Using Mouse Dynamics for Continuous User Authentication
...Show More Authors

View Publication
Scopus (10)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Middle-east Journal Of Scientific Research
Question Classification Using Different Approach: A Whole Review
...Show More Authors

Preview PDF