Preferred Language
Articles
/
alkej-816
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN
...Show More Authors

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Middle Eastern Simulation And Modelling Conference 2022, Mesm 2022,
MECHANICS OF COMPOSITE PLATE STRUCTURE REINFORCED WITH HYBRID NANO MATERIALS USING ARTIFICIAL NEURAL NETWORK
...Show More Authors

Scopus (1)
Scopus
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
River Water Salinity Impact on Drinking Water Treatment Plant Performance Using Artificial neural network
...Show More Authors

The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Performance assessment of biological treatment of sequencing batch reactor using artificial neural network technique.
...Show More Authors

Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa

... Show More
Publication Date
Thu Jan 22 2026
Journal Name
Journal Of Physical Education
The Effect of Electric Stimulation Using Proposed Apparatus on Static Balance Through Hamstring Muscle Rehabilitating in Athletes Suffering from Mild Muscle Tear
...Show More Authors

View Publication
Publication Date
Mon May 01 2023
Journal Name
Journal Of Physical Education
The Effect of Electric Stimulation Using Proposed Apparatus on Static Balance Through Hamstring Muscle Rehabilitating in Athletes Suffering from Mild Muscle Tear
...Show More Authors

KS Ismaeil, BR Jawad, Journal of Physical Education, 2023

View Publication
Publication Date
Fri Dec 01 2023
Journal Name
Case Studies In Chemical And Environmental Engineering
Removal of copper from a simulated wastewater by electromembrane extraction technique using a novel electrolytic cell provided with a flat polypropylene membrane infused with 1-octanol and DEHP as a carrier
...Show More Authors

View Publication
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Mon Aug 29 2022
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries
...Show More Authors

High-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an elec

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Prediction Unconfined Compressive Strength for Different Lithology Using Various Wireline Type and Core Data for Southern Iraqi Field
...Show More Authors

Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria.  Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core.  Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev

... Show More
View Publication
Scopus (21)
Crossref (11)
Scopus Crossref