The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Consider a simple graph on vertices and edges together with a total labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say defined by for all where Also, the value is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by and is the least for which G admits edge irregular h-labeling. In this article, for some common graph families are examined. In addition, an open problem is solved affirmatively.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
An edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
... Show MoreThe present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
In this paper, we will give another class of normal operator which is (K-N)*
quasi-n-normal operator in Hilbert space, and give some properties of this concept
as well as discussion the relation between this class with another class of normal
operators.
The goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show MoreThe main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
Let be a connected graph with vertices set and edges set . The ordinary distance between any two vertices of is a mapping from into a nonnegative integer number such that is the length of a shortest path. The maximum distance between two subsets and of is the maximum distance between any two vertices and such that belong to and belong to . In this paper, we take a special case of maximum distance when consists of one vertex and consists of vertices, . This distance is defined by: where is the order of a graph .
In this paper, we defined – polynomials based on
... Show MoreIn this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied.