In this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and a variable angle with the dual-axis tracking system. For maximum value of the extracted solar energy, a photovoltaic solar panel that collects sunlight should be in normal position onto this radiation. Solar trackers relocated the panel toward the path of the Sun to ensure that the collector rotated at an optimal tilt angle. The results showed that the generated power at the dual-axis position was 3.384 watts per hour (W/h), the 33-degree angle yielded 2.237 W/h, and the zero-degree angle yielded 1.09 W/h. The results confirmed that the performance of a dual-axis solar tracking system is active and efficient.
In this paper, we have examined the effectiveness exchange of optical vorticity via three-wave mixing (TWM) technique in a four-level quantum dot (QD) molecule by means of the electron tunneling effect. Our analytical analysis demonstrates that the TWM procedure can result in the production of a new weak signal beam that may be absorbed or amplified within the QD molecule. We have taken into account the electron tunneling as well as the relative phase of the applied lights to assess the absorption and dispersion characteristics of the newly generated light. We have discovered that the slow light propagation and signal amplification can be achieved. Our results show that the exchange o
The study focuses on the causes of minaret tilting as well as possible solutions. The major aims of this study are to improve knowledge of historical tall structure stability and rehabilitation operations using the finite element approach to model the soil and minaret (PLAXIS 3D 2020), a platform for computational soil investigation and modeling. The numerical analysis aims to identify stresses, settlement, and deformation of the soil and minaret in various scenarios like Earthquakes, explosions, and winds. The simulation of the problem by the PLAXIS 3D revealed that the greatest lateral displacement computed at the Top Minaret is 5.5 cm, and the greatest vertical movement is calculated to be 3 cm. Seismic settlement is the effect of ear
... Show MoreAlpha-tocopherol acetate is one of the most important vitamin E derivatives,that were used as antioxidants. Adsorbents like kaolin, magnesium carbonate, and microcrystalline cellulose were used successfully to incorporate oily alpha-tocopherol acetate into an acceptable powder dosage form. The results revealed that microcrystalline cellulose as an adsorbents gave the best results with 50% loading capacity at time, 8 minutes before and after incubation period (3 months at 30C°), while kaolin and magnesium carbonate have been shown a significant difference before and after incubation. Addition of 1% w/w magnesium carbonate to the kaolin enhanced the loading capacity by decreasing the time of adsorption from 20 to 6 minutes and 47
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreOne of the bigger problems in drinking water is disinfection by-products (DBPs) that come from chlorinated disinfection. This study’s goal was to evaluate the drinking water in Al-Yarmouk Teaching Hospital, Ibn Sina Hospital and Ibn-Al-Nafis Hospital. Samples were collected between October 2018 and September 2019. Physical and chemical characteristics of the water were studied, including (temperature, hydrogen ion (pH), total dissolved solids (TDS), electrical conductivity (EC), turbidity, free residual chlorine, total organic carbon (TOC), total trihalomethanes (THMs), total halo acetic acid (THAAs)). Data analysis showed the highest value of study temperature, pH, TDS, EC, turbidity, free residual chlorine and TOC which was
... Show MoreCerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show More