In this work we explain and discuss new notion of fibrewise topological spaces, calledfibrewise soft ideal topological spaces, Also, we show the notions of fibrewise closed soft ideal topological spaces, fibrewise open soft ideal topological spaces and fibrewise soft near ideal topological spaces.
In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two t
... Show MoreThe aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Abstract: In recent times, global attention has increasingly focused on the critical issue of environmental sustainability, owing to escalating environmental degradation exacerbated by the utilization of green spaces and technological innovation. This phenomenon necessitates thorough examination, prompting the present study to scrutinize the impact of various factors, namely green spaces, technological innovation, environmental taxes, renewable energy consumption (REC), inflation, and economic growth (EG), on environmental sustainability within the context of Iraq. Secondary data extracted from the World Development Indicators (WDI) spanning the period from 1991 to 2022 served as the foundation for this investigation. Methodologically, the
... Show MoreIn this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
Numerous integral and local electron density’s topological parameters of significant metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp* Ir) (Cp Ru)2 (μ3-H) (μ-H)3]1 (Cp = η5 -C5Me5), (Cp* = η5 -C5Me4Et) were calculated and interpreted by using the quantum theory of atoms in molecules (QTAIM). The properties of bond critical points such as the delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density
... Show MoreExpressions for the molecular topological features of silicon carbide compounds are essential for quantitative structure-property and structure-activity interactions. Chemical Graph Theory is a subfield of computational chemistry that investigates topological indices of molecular networks that correlate well with the chemical characteristics of chemical compounds. In the modern age, topological indices are extremely important in the study of graph theory. Topological indices are critical tools for understanding the core topology of chemical structures while examining chemical substances. In this article, compute the first and second k-Banhatti index, modified first and second k-Banhatti index, first and second k-hyper Banhatti index, fir
... Show MoreIn this thesis, we introduced the simply* compact spaces which are defined over simply* open set, and study relation between the simply* separation axioms and the compactness were studied and study a new types of functions known as αS^(M* )- irresolte , αS^(M* )- continuous and R S^(M* )- continuous, which are defined between two topological spaces. On the other hand we use the class of soft simply open set to define a new types of separation axioms in soft topological spaces and we introduce the concept of soft simply compactness and study it. We explain and discuss some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply c
... Show More