Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.
A field study aimed to improve administrative performance of the Heads of Departments in Wasit University in light of the administrative functions, a questionnaire constructed was c of 38 items, as have been applied during the academic year 2014/2015 to a group of experts from the deans and assistants, professors and heads of departments using the Delphi method by two rounds the adoption rate of 90% and an agreement was numbered 30 experts and study reached important results have been analyzed and discussed according to fields of study, a planning, organization and direction.
Age and BMI may be used to diagnosis of thyroid autoimmune disease. One hundred Iraqi women with age ranged from 18 to 60 years participate in this research, 50 of them were hypothyroidism patients, 30 were hyperthyroidism patients and the other 20 were euthyroidism served as controls. Blood samples were collected from the studied subjects to determine thyroid profile [free triiodothyronine (FT3), free tetraiodothyronine (FT4) and thyroid stimulating hormone (TSH)], thyroid antibodies [anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-Tg), and anti-thyroid stimulating hormone receptor (anti-TSHR)], and levels of vitamin D (vit D), calcium (Ca), and phosphorus (P) using different analysis techniques. When the effect of age
... Show MoreSemantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show MoreThis paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreAbstract:
One of the most prominent historical stage feature that is well- known
nowadays in the world is democracy issue. This issue gives man the right to
reflect his concept and notions . It,s the world of freedom , human right and
liberation of women. This leads to the principle of equality between women
and men which is put in the top of liberty and Improvement lists .
Improvement can be defined as a group of means and ways that is
used to direct human work to improve their level of life economically and
socially .
This study contains three sections, the first presents the social state of
women in pre-history period . And the second section presents the theory of
improvement as an important social ph
the student of the structure of the city and its constituent elements will clearly sense the invisible relationships that underlie the different forms of urban activity, which in turn are defined by the generality of the urban patterns in that city, which will vary clearly according to the location in the city. These relations will be embodied in their true form in the interactions between the different uses of the earth, and the change that will result from their regularity in the form of entities in independent groups, which may share with each other a component of it.
Therefore, the process of controlling the functional interactions between the uses of the urban land and the awareness of t
Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show More