Preferred Language
Articles
/
YBg-fpQBVTCNdQwCeBvC
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.

Scopus Crossref
View Publication
Publication Date
Sat Jun 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
A novel fusion-based approach for the classification of packets in wireless body area networks
...Show More Authors

This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Proposed Security Models for Node-level and Network-level Aspects of Wireless Sensor Networks Using Machine Learning Techniques
...Show More Authors

     As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement for Wireless Sensor Networks
...Show More Authors

In this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement for Wireless Sensor Networks
...Show More Authors

In this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Enhancing the Performance of Wireless Body Area Network Routing Protocols Based on Collaboratively Evaluated Values
...Show More Authors

Wireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates i

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Classification Based on Weighted Extreme Learning Machine
...Show More Authors

The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed   a great competence of the proposed WELM compared to the ELM. 

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Mar 31 2023
Journal Name
Wasit Journal Of Computer And Mathematics Science
Security In Wireless Sensor Networks Based On Lightweight Algorithms : An Effective Survey
...Show More Authors

At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena

... Show More
View Publication
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
An overview of machine learning classification techniques
...Show More Authors

Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (6)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Heart Disease Classification–Based on the Best Machine Learning Model
...Show More Authors

    In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne

... Show More
View Publication Preview PDF
Scopus (12)
Scopus Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (270)
Crossref (238)
Scopus Clarivate Crossref