Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.
At present, smooth movement on the roads is a matter which is needed for each user. Many roads, especially in urban areas geometrically improved because of the number of vehicles increase from time to time.
In this research, Highway capacity software, HCS, 2000, will be adopted to determine the effectiveness of roundabout in terms of capacity of roundabout, delay and level of service of roundabout.
The results of the analysis indicated that the Ahmed Urabi roundabout operates under level of service F with an average control delay of 300 seconds per vehicle during the peak hours.
The through movements of Alkarrada- Aljadiriya direction (Major Direction) represent the heaviest traff
... Show MoreDespite recent attempts to improve safety in the construction sector, this sector is considered dangerous and unsafe. Iraq is one of the emerging nations that suffers from a lack of construction safety management. In 2018, the construction sector in Iraq was responsible for 38% of all industrial accidents. Creating a safety program minimizes this problem by making safety an intrinsic part of construction projects. As a result, this article aims to identify the crucial safety factors that affect the safety performance in Iraqi construction projects. After conducting a critical literature review of the related literature, a list of 35 sub-factors classified into nine categories of main factors was chosen to rank each facto
... Show Moreاعداد : أسرار عبد الزهراء علي - علاء الدين - ب. جواد حسن عودة عبد الله - جامعة بغداد جامعة بغداد كلية البصرة للعلوم والتكنولوجيا - كلية الإدارة والاقتصاد. كلية الإدارة والاقتصاد المركز الديمقراطي العربي – مجلة القانون الدستوري والعلوم الإدارية : العدد التاسع شباط – فبراير 2021 المجلد 3 ،
Background: Health information systems in most countries are inadequate in providing the needed management support and the current health information systems are therefore widely seen as management obstacles rather than as tools,Objectives: the current study is an attempt to assess the behavioral and organizational determinants of health information system performance in Iraq.Methods: A cross-sectional study was conducted by interviewed a total of 189 respondents selected from six Iraqi governorates. The Organizational and Behavioral Assessment Tool was used to measure the behavioral and organizational determinants of health information system performance, it is one of the PRISM package tools that are used to assess the health informatio
... Show MoreMassive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreAccurate land use and land cover (LU/LC) classification is essential for various geospatial applications. This research applied a Spectral Angle Mapper (SAM) classifier on the Landsat 7 (ETM+ 2010) & 8 (OLI 2020) satellite scenes to identify the land cover materials of the Shatt al-Arab region which is located in the east of Basra province during ten years with an estimate of the spectral signature using ENVI 5.6 software of each cover with the proportion of its area to the area of the study region and produce maps of the classified region. The bands of these datasets were analyzed using the Optimum Index Factor (OIF) statistic. The highest OIF represents the best and most appropr
Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show MoreIn this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.