Preferred Language
Articles
/
XhfW0IwBVTCNdQwC_Qhr
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jul 27 2019
Journal Name
Sensors
Neurophysiological Characterization of a Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Fine-Wire EMG Electrodes
...Show More Authors

This study aims to characterize traumatic spinal cord injury (TSCI) neurophysiologically using an intramuscular fine-wire electromyography (EMG) electrode pair. EMG data were collected from an agonist-antagonist pair of tail muscles of Macaca fasicularis, pre- and post-lesion, and for a treatment and control group. The EMG signals were decomposed into multi-resolution subsets using wavelet transforms (WT), then the relative power (RP) was calculated for each individual reconstructed EMG sub-band. Linear mixed models were developed to test three hypotheses: (i) asymmetrical volitional activity of left and right side tail muscles (ii) the effect of the experimental TSCI on the frequency content of the EMG signal, (iii) and the effect

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Comparative Medicine
Model of traumatic spinal cord injury for evaluating pharmacologic treatments in cynomolgus macaques (Macaca fasicularis)
...Show More Authors

Here we present the results of experiments involving cynomolgus macaques, in which a model of traumatic spinal cord injury (TSCI) was created by using a balloon catheter inserted into the epidural space. Prior to the creation of the lesion, we inserted an EMG recording device to facilitate measurement of tail movement and muscle activity before and after TSCI. This model is unique in that the impairment is limited to the tail: the subjects do not experience limb weakness, bladder impairment, or bowel dysfunction. In addition, 4 of the 6 subjects received a combination treatment comprising thyrotropin releasing hormone, selenium, and vitamin E after induction of experimental TSCI. The subjects tolerated the implantation of the recording devi

... Show More
Scopus (6)
Scopus
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2012
Journal Name
Al-kindy College Medical Journal
Evaluation of Management of Closed Spinal Injury
...Show More Authors

Objectives: to evaluate the role of conservative, decompression, spine fixation in management of closed spinal injury.
Methods: The study was conducted at Specialized Surgical hospital and Al-Kadhemayia Teaching Hospital, in the period between July 2003 and July 2005.The study included 61 patients categorized Into many groups according level of vertebral injury (cervical, cervicodorsal, dorsal, dorsolumbar, Lumbar and lumbosacral), type of injury (compressed fracture, burst fracture and fracture dislocation) And according the severity into three groups as G1( complete motor paralysis and sensory loss ) G2 ( complete motor paralysis and incomplete sensory loss) and G3 ( incomplete motor paralysis And incomplete sensory loss ).The metho

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network
...Show More Authors

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Fri Nov 11 2022
Journal Name
Surgical Neurology International
Brown-Sequard syndrome associated with a spinal cord injury caused by a retained screwdriver: A case report and literature review
...Show More Authors
Background:

Nonmissile penetrating spine injury (NMPSI) represents a small percent of spinal cord injuries (SCIs), estimated at 0.8% in Western countries. Regarding the causes, an NMPSI injury caused by a screwdriver is rare. This study reports a case of a retained double-headed screwdriver in a 37-year-old man who sustained a stab injury to the back of the neck, leaving the patient with a C4 Brown-Sequard syndrome (BSS). We discuss the intricacies of the surgical management of such cases with a literature review.

Methods:

PubMed database was searched by the following combined formula of medical subjects headings,

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Mon Feb 14 2022
Journal Name
Journal Of Educational And Psychological Researches
Comparison between Rush Model Parameters to Completed and Lost Data by Different Methods of Processing Missing Data
...Show More Authors

The current study aims to compare between the assessments of the Rush model’s parameters to the missing and completed data in various ways of processing the missing data. To achieve the aim of the present study, the researcher followed the following steps: preparing Philip Carter test for the spatial capacity which consists of (20) items on a group of (250) sixth scientific stage students in the directorates of Baghdad Education at Al–Rusafa (1st, 2nd and 3rd) for the academic year (2018-2019). Then, the researcher relied on a single-parameter model to analyze the data. The researcher used Bilog-mg3 model to check the hypotheses, data and match them with the model. In addition

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Biochemical & Cellular Archives
MORPHOLOGICAL STUDY OF THE BRAIN AND SPINAL CORD OF THE IRAQI FROG, RANA RIDIBUNDA RIDIBUNDA
...Show More Authors

The frog has a highly developed nervous system. It consists of a brain, a spinal cord and nerves. The brain is the only center for the control of all vital activities as it receives impulses from different parts of the body through sensory nerves and issues orders through motor fibers to different parts of the body for appropriate action. The Aims of studyis general morphological structural of the brain and spinal cord in the Iraqi frog Rana ridibunda ridibunda. The brains of twenty of frogs belonging to class Amphibia were studied using conventional techniques of dissecting microscopy. All samples were sacrificed and anesthetized and then they were removed completely from the neurocranium, cranial, sensory nerves and the meninges and trans

... Show More
Scopus
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Estimation Methods Of GM(1,1) Model With Missing Data and Practical Application
...Show More Authors

This paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt  properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1)  is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method  (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Comparison Different Estimation Methods for the Parameters of Non-Linear Regression
...Show More Authors

   Nonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem.  Hence, in this paper, the BAT algorithm  to estimate the parameters of  Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.

View Publication Preview PDF
Scopus (3)
Scopus Crossref