The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations concerning with these concepts are studied.
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In this paper, we define the bg**-connected space and study the relation between this space and other kinds of connected spaces .Also we study some types of continuous functions and study the relation among (connected space, b-connected space, bg-connected space and bg**-connected space) under these types of continuous functions.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Sequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show MoreThis research presents the concepts of compatibility and edge spaces in
The purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space. Give some results and properties and find relations between general partial metric space, partial metric spaces and D-metric spaces.
In this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
In this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.