Preferred Language
Articles
/
XRcOqJEBVTCNdQwC25fh
Enhancement of Nano Catalyst for an Alkaline Fuel Cells
...Show More Authors

Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Advanced nano membrane for an alkaline Fuel Cell
...Show More Authors
Abstract<p>Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.</p>
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Physics: Conference Series
Development of carbon nanotubes catalyst supported for alkaline fuel cell technology
...Show More Authors
Abstract<p>Study of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.</p>
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Fabrication and Study of Nano catalysis for Alkaline Fuel Cell
...Show More Authors

In this paper the manufacture of an alkaline fuel cell electrodes made upfrom a Nano mesh (Pt:NiO) catalyst has been studying , made from a Nano mesh (Pt:NiO ) catalyst. The general morphology of the samples is were imaged by using with the an Atomic Force Microscope (AFM) to determine the roughness of the prepared surface, it constructed from nanostructure with dimensions in order of 35 nm. The Structural characteristics were studied through the analysis of X-ray diffraction (XRD) of the prepared nanomaterial for determining the yielding phase;1. 72 volt was also obtained at 0.02 A/cm2 current density for an alkaline fuel cell.

View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Fabrication and Study of Nano catalysis for Alkaline Fuel Cell
...Show More Authors

Preview PDF
Scopus
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Characterization of nickel oxide nanocatalyst electrodes for an alkaline fuel cell
...Show More Authors
Abstract<p>In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.</p>
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Indian Journal Of Natural Sciences
Design and Test of Electrochemistry of Electrodes Catalysis for an Alkaline Fuel Cell
...Show More Authors

Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
International Science And Engineering Congress Book
Preparation platinum Nano catalysts for Fabricating membranes fuel cell
...Show More Authors

Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Nano MgO catalyst for chemical depolymerization of polyethylene terephthalate (PET)
...Show More Authors

This paper focuses firstly on the production of monomers bis (2-hydroxyethyl) terephthalate (BHET) and oligomers by using two different form of MgO light active and Nano Magnesium oxide with different weight ratio (0.15, 0.25 and 0.5) by using chemical recycling glass condenser at 190 ˚C. The second purpose is to study the effect of catalyst ratio, time of reaction and yield of products of the product. Elemental analysis for Carbon –Hydrogen and Nitrogen (CHN), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) have been investigated. Results indicated the catalytic activity was found to correlate with surface area; however, LA MgO has shown an exceptional activity, still it is h

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Synthesis Of Nano Ni-Mo/γ-Al2O3 CatalystSynthesis Of Nano Ni-Mo/γ-Al2O3 Catalyst
...Show More Authors

Nano γ-Al2O3 support was prepared by co-precipitation method by using different calcination temperatures (550, 600, and 750) oC. Then nano NiMo/γ-Al2O3 catalyst was prepared by impregnation method were nickel carbonate (source of Ni) and ammonium paramolybdate (source of Mo) on the best prepared nano γ-Al2O3 support at calcination temperature 550 oC. Make the characterizations for prepared nano γ-Al2O3 support at different temperatures and for nano NiMo/γ-Al2O3 catalyst like X-ray diffraction, X-ray fluorescent, AFM, SEM, BET surface area, and pore volume.

The N

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Synthesis and Characterization of New nano catalyst Mo-Ni /TiO2- γAl2O3 for Hydrodesulphurization of Iraqi Gas Oil
...Show More Authors

   A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref