Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the most possible less character number (same DNA length) which is four-character DNA encoding that represented all 41 attributes known as DEM4all. The experiments conducted using standard data KDDCup 99 and NSL-KDD. Teiresias algorithm is used to extract Short Tandem Repeat (STR), which includes both keys and their positions in the network traffic, while Brute-force algorithm is used as a classification process to determine whether the network traffic is attack or normal. Experiment run 30 times for each DNA encoding method. The experiment result shows that proposed method has performed better accuracy (15% improved) compare with previous and state of the art DNA algorithms. With such results it can be concluded that the proposed DEM4all DNA encoding method is a good method that can used for IDS. More complex encoding can be proposed that able reducing less number of DNA sequence can possible produce more detection accuracy.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreIn fish, a complex set of mechanisms deal with environmental stresses including hypoxia. In order to probe the hypothesis that hypoxia-induced stress could be manifested in varieties of pathways, a model species, mirror carp (Cyprinus carpio), were chronically exposed to hypoxic condition (dissolved oxygen level: 1.80±0.6mg/l) for 21 days and subsequently allowed to recover under normoxic condition (dissolved oxygen level: 8.2±0.5mg/l) for 7 days. At the end of these exposure periods, an integrated approach was applied to evaluate several endpoints at different levels of biological organisation. These included determination of (i) oxidative damage to DNA in erythrocytes (using modified comet assay), (ii) lipid peroxidation in liver sample
... Show MoreGranular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreThe levels of lead (pb), copper (cu), cobalt (co) and cadmium (cd) were determined in different kinds of milk and the health risks were evaluated. The mean levels were 0.73±0.21, 0.06±0.01, 0.12±0.01 and 0.14±0.01 ppm for these metals respectively. The levels of pb and cu were found to be insignificant differences (p<0.05), whereas the levels of co and cd, were no significant differences (p>0.05). The dry and liquid kinds of milk were different significantly (p<0.05), whereas the original, was no significant differences (p>0.05). The values for all metals were more than one. The metals pb and cd were detected at highest concentrations in most dry and liquid milk samples.
In the present study, a total of 245 flour samples were collected from 49 mills on both sides of Baghdad city (Al- Karkh and Al- Resafa), during the period from 1/6 - 1/12/ 2015 to detect the prolportion of iron added to the flour samples. It is found that only 45% of mills produced flour contain the prescribed percentage of iron (30-60 ppm) while 51.9% of the mills produced flour at rate is less or much more than the prescribed percentage, while only 4.1% of the mills were not added iron to the flour.
The results shows existence of metals such as copper, iron, Cadmium, lead and zinc in most of examined samples , the highest concentration are up to (2.26, 40.82, 282.5, 31.02, 19.26, 4.34) Part per million) ppm) in pasta hot (Zer brand), Indomie with chicken, granule (Zer brand), brand (Zer brand), and rice (mahmood brand) respectively, with presence nickel in spaghetti( Zer brand), granule, Zer brand with concentration reached to 4.34 ppm and 1.06 ppm respectively.
The results of cereals group and its products show that two kinds of fungi, Aspergillus spp. and Penicillin spp. were found in rice (Mahmood brand) with numbers got to 1.5×103 Colony Forming Unit/ gram (c.f.u./g),while Bacillus cereus and Staphylococcus aureus were isola
Active worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.
Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)