In this study water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals) using N-acetyl cysteine as a stabilizer were prepared to investigate the utility of quantum dots (QDs) in distinguishing damaged DNA, (extracted from blood samples of leukaemia patients), from intact DNA (extracted from blood samples of healthy individuals) to be used for biosensing application. Based on the optical characterization of the prepared QDs, the XRD results revealed the formation of the NAC-CdTe-QDs with a grain size of 7.1nm. Whereas, the SEM test showed that the spherical size of the NAC-CdTe-QDs lies within 11~33nm. NAC-CdTe-QDs have superior PL emission properties at of 550nm and UV-Vis absorption peak at 300nm. The energy gap measurement through PL and UV–Vis was found to be 2.2eV and 2.3 eV, respectively. The interaction between the synthesized QDs and the extracted genomic DNA (both cancer damaged DNA and healthy undamaged DNA) was analysed optically, and compared to the normal reference DNA. The results showed a shift in the maximum fluorescence emission intensities (observed at 540nm nm for a damaged sample and 535 for a reference cell). Based on the obtained fluorescence results, the present study reached the conclusion that the prepared core/shell QDs could be employed as probes for diagnosing genetically disrupted DNA that is associated with malignant diseases from healthy DNA.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreA Forensic Accounting is represent science that deals with the application of knowledge in the areas of accounting, finance, tax and audit for the analysis, investigation, inquiry, inspection and testing issues in the civil law and criminal law in an attempt to reach the truth through which enable the Forensic Accountant to provide his Expert opinion , forensic accounting plays a major role by providing a range of important services in the field of investigation for fraud and litigation support, As one of the most important legal and accounting functions is to investigate allegations of alleged by the related parties, especially those allegations related to the existence of fraud, since the goal of judicial accountant will depend
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreIt is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases : first, in real data; and secondly, after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.