Preferred Language
Articles
/
TBesUJEBVTCNdQwC_5RQ
Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN
...Show More Authors

Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Aug 06 2022
Journal Name
Ijci. International Journal Of Computers And Information
Techniques for DDoS Attack in SDN: A Comparative Study
...Show More Authors

Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Iraqi Journal Of Information & Communications Technology
Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms
...Show More Authors

Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope

... Show More
View Publication Preview PDF
Crossref (19)
Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (99)
Crossref (91)
Scopus Clarivate Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Ieee Access
SHE Networks: Security, Health, and Emergency Networks Traffic Priority Management Based on ML and SDN
...Show More Authors

Recently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat

... Show More
View Publication
Scopus (12)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Feb 15 2023
Journal Name
Remote Sensing
Combining Remote Sensing Approaches for Detecting Marks of Archaeological and Demolished Constructions in Cahokia’s Grand Plaza, Southwestern Illinois
...Show More Authors

Remote sensing data are increasingly being used in digital archaeology for the potential non-invasive detection of archaeological remains. The purpose of this research is to evaluate the capability of standalone (LiDAR and aerial photogrammetry) and integration/fusion remote sensing approaches in improving the prospecting and interpretation of archaeological remains in Cahokia’s Grand Plaza. Cahokia Mounds is an ancient area; it was the largest settlement of the Mississippian culture located in southwestern Illinois, USA. There are a limited number of studies combining LiDAR and aerial photogrammetry to extract archaeological features. This article, therefore, combines LiDAR with photogrammetric data to create new datasets and inv

... Show More
View Publication
Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (17)
Crossref (6)
Scopus Crossref
Publication Date
Mon Dec 25 2023
Journal Name
Ieee Access
ITor-SDN: Intelligent Tor Networks-Based SDN for Data Forwarding Management
...Show More Authors

Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes del

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
SDN-RA: An Optimized Reschedule Algorithm of SDN Load Balancer for Data Center Networks Based on QoS
...Show More Authors
Abstract<p>With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jan 04 2018
Journal Name
Journal Of Electrical Engineering And Technology
An efficient selective method for audio watermarking against de-synchronization attacks
...Show More Authors

View Publication
Scopus (7)
Scopus
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
New Method for the Determination of DL-Histidine by FIA and Chemiluminometric Detection
...Show More Authors

This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.

View Publication Preview PDF
Crossref