Remote sensing data are increasingly being used in digital archaeology for the potential non-invasive detection of archaeological remains. The purpose of this research is to evaluate the capability of standalone (LiDAR and aerial photogrammetry) and integration/fusion remote sensing approaches in improving the prospecting and interpretation of archaeological remains in Cahokia’s Grand Plaza. Cahokia Mounds is an ancient area; it was the largest settlement of the Mississippian culture located in southwestern Illinois, USA. There are a limited number of studies combining LiDAR and aerial photogrammetry to extract archaeological features. This article, therefore, combines LiDAR with photogrammetric data to create new datasets and investigate whether the new data can enhance the detection of archaeological/ demolished structures in comparison to the standalone approaches. The investigations are implemented based on the hillshade, gradient, and sky view factor visual analysis techniques, which have various merits in revealing topographic features. The outcomes of this research illustrate that combining data derived from different sources can not only confirm the detection of remains but can also reveal more remains than standalone approaches. This study demonstrates that the use of combination remote sensing approaches provides archaeologists with another powerful tool for site analysis.
To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreThe phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreThis study investigates data set as satellite images of type multispectral Landsat-7, which are observed for AL_Nasiriya city, it is located in southern of Iraq, and situated along the banks of the Euphrates River. These raw data are thermal bands of satellite images, they are taken as thermal images. These images are processed and examined using ENVI 5.3 program. Consequently, the emitted Hydrocarbon is extracted, and the black body algorithm is employed. As well as, the raster calculations are performed using ArcGIS, where gas and oil features are sorted. The results are estimate and determine the oil and gas fields in the city. This study uncovers, and estimates several unexplored oil and gas fields. Whereas,
... Show MoreIn the present work, different remote sensing techniques have been used to analyze remote sensing data spectrally using ENVI software. The majority of algorithms used in the Spectral Processing can be organized as target detection, change detection and classification. In this paper several methods of target detection have been studied such as matched filter and constrained energy minimization.
The water body mapping have been obtained and the results showed changes on the study area through the period 1995-2000. Also the results that obtained from applying constrained energy minimization were more accurate than other method comparing with the real situation.
In cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show MoreFeature extraction provide a quick process for extracting object from remote sensing data (images) saving time to urban planner or GIS user from digitizing hundreds of time by hand. In the present work manual, rule based, and classification methods have been applied. And using an object- based approach to classify imagery. From the result, we obtained that each method is suitable for extraction depending on the properties of the object, for example, manual method is convenient for object, which is clear, and have sufficient area, also choosing scale and merge level have significant effect on the classification process and the accuracy of object extraction. Also from the results the rule-based method is more suitable method for extracting
... Show MoreBiodiversity, biological diversity, biological diversity, biological diversity, biological diversity, biological diversity, biological diversity (by developmental factors) environmental factors and environmental factors environmental factors and environmental factors and environmental factors Correlation between biology and the succession of geological and historical factors of living organisms and geological and historical factors to the site and what It is surrounded by natural and tourist attractions and the pursuit of scientific methods in order to advance the studies of biological diversity in the region .
The marshes are one of the important environmental features affecting human and animal systems, so the studying of changes they undergo is one of the important topics. This study is concerned with the changes occurring in the Al Saadya marsh for the period from 1987 to 2017 exclusively in the winter season (the marshes’ revival season in Iraq revive). In order to inspect the changes in this marsh, we choose 7 years to cover the study period as a criterion years, namely 1987, 1990, 1995, 2000, 2007, 2014 and 2017. The “Maximum Likelihood” classifier was used to separate the stacked land cover features, where the minimum overall accuracy ratio that recorded for all years of study was 96%. The results revealed that Al-Saadya marsh went t
... Show More