Preferred Language
Articles
/
TBesUJEBVTCNdQwC_5RQ
Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN
...Show More Authors

Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing
...Show More Authors

Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison Between Two Approaches (MLE &DLS) to Estimate Frechet Poisson Lindley Distribution Compound by Using Simulation
...Show More Authors

  In this paper simulation technique plays a vital role to compare between two approaches Maximum Likelihood method and Developed Least Square method to estimate the parameters of Frechet Poisson Lindley Distribution Compound. by coding using Matlab software program. Also, under different sample sizes via mean square error. As the results which obtain that Maximum Likelihood Estimation method is better than Developed Least Square method to estimate these parameters to the proposed distribution.

View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Dynamic Routing Method over Hybrid SDN for Flying Ad Hoc Networks
...Show More Authors

Due to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Nov 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Indirect lmunofluorescent Antibody Test for Detecting Chlamydial Infection
...Show More Authors

A total of 243 serum samples  were tested  for the presence of

Chlamydia antibodies by ind irect immunofluorescent antibody test.Ninety

nine females were suffering from abortions, 64 were infertile and other 80 were  none  aborted  women.  The  incidence of  Ch lamydia  were  (15%,

9.4%)   and   (3.8%)   in  abortion,   infertile   and   non   aborted   group,

respecti vely.  The  results  also  showed  a difference  in  prevalence rate between the age groups. The  highest  incidence was found  in the age group  20-39 &

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 18 2022
Journal Name
Ieee Access
Moderately Multispike Return Neural Network for SDN Accurate Traffic Awareness in Effective 5G Network Slicing
...Show More Authors

Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi

... Show More
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
Approaches in media, role and mobilization
...Show More Authors

There is a natural problem raised by the issue of media performance. As a separate activity and express its own capabilities. This problem can be framed in the form of a question: Is media performance merely a reflection of the activity of other sectors of society, especially political and economic, and what links them to other societal sectors of interrelated relations? Is the media limited to mere transfer, or is it an industry with its own mechanisms and rules? The answer may seem somewhat complicated if we handle media with research and study in general, but the issue may be less complicated when it comes to Arab media, because its data may add another setback to the overall Arab setbacks.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Detecting Outliers In Multiple Linear Regression
...Show More Authors

It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases :  first, in real data; and secondly,  after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for  comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.

View Publication Preview PDF
Crossref