In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection criteria, as- sessing the correct detection of zero coefficients and the false omission of nonzero coef- ficients. A practical application involving financial data from the Baghdad Soft Drinks Company demonstrates their utility in identifying key predictors of stock market value. The results indicate that MAVE-SCAD performs well in high-dimensional and complex scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more parsimonious models. These results highlight the effectiveness of these two methods in addressing key challenges in semiparametric modeling
A numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro
Estimating multivariate location and scatter with both affine equivariance and positive break down has always been difficult. Awell-known estimator which satisfies both properties is the Minimum volume Ellipsoid Estimator (MVE) Computing the exact (MVE) is often not feasible, so one usually resorts to an approximate Algorithm. In the regression setup, algorithm for positive-break down estimators like Least Median of squares typically recomputed the intercept at each step, to improve the result. This approach is called intercept adjustment. In this paper we show that a similar technique, called location adjustment, Can be applied to the (MVE). For this purpose we use the Minimum Volume Ball (MVB). In order
... Show MorePushover analysis is an efficient method for the seismic evaluation of buildings under severe earthquakes. This paper aims to develop and verify the pushover analysis methodology for reinforced concrete frames. This technique depends on a nonlinear representation of the structure by using SAP2000 software. The properties of plastic hinges will be defined by generating the moment-curvature analysis for all the frame sections (beams and columns). The verification of the technique above was compared with the previous study for two-dimensional frames (4-and 7-story frames). The former study leaned on automatic identification of positive and negative moments, where the concrete sections and steel reinforcement quantities the
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreGas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .
الغرض من هذا العمل هو دراسة الفضاء الإسقاطي ثلاثي الأبعاد PG (3، P) حيث p = 4 باستخدام المعادلات الجبرية وجدنا النقاط والخطوط والمستويات وفي هذا الفضاء نبني (k، ℓ) -span وهي مجموعة من خطوط k لا يتقاطع اثنان منها. نثبت أن الحد الأقصى للكمال (k، ℓ) -span في PG (3،4) هو (17، ℓ) -span ، وهو ما يساوي جميع نقاط المساحة التي تسمى السبريد.