Preferred Language
Articles
/
UhgADJYBVTCNdQwC-YES
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection criteria, as- sessing the correct detection of zero coefficients and the false omission of nonzero coef- ficients. A practical application involving financial data from the Baghdad Soft Drinks Company demonstrates their utility in identifying key predictors of stock market value. The results indicate that MAVE-SCAD performs well in high-dimensional and complex scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more parsimonious models. These results highlight the effectiveness of these two methods in addressing key challenges in semiparametric modeling

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
A Visual Interface Design for Evaluating the Quality of Google Map Data for some Engineering Applications
...Show More Authors

Today, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses

... Show More
View Publication
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
A Proposed Artificial Intelligence Algorithm for Assessing of Risk Priority for Medical Equipment in Iraqi Hospital
...Show More Authors

This paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 22 2021
Journal Name
Iraqi Journal Of Agricultural Sciences
THE EFFECIENCY OF ENTERIC LACTOBACILLUS IN PREVENTING HEMORRHAGIC COLITIS AND BLOCKING SHIGA TOXINS PRODUCTIONS IN RATS MODELS INFECTED WITH ENTEROHEMORRHAGIC ESCHERICHIA COLI (EHEC)
...Show More Authors

The objective of this study was to investigate the prophylactic roles of human enteric derived Lactobacillus plantarum L1 (Ll) and Lactobacillus paracasei L2 (L2), on EHEC O157:H7 infection in rodent models (In vivo). The Lactobacillus suspensions (L1 and L2) were individually and orally administered to experimental rats at a daily two consecutives of 100 μl (108 CFU/ ml/rat) for up to two weeks.  Thereafter, on the 8th day of experiment rats were orally challenged with one dose infection of EHEC (105 CFU/ml/rat). Animals mortality and illness symptoms have been monitored. There was no fatal EHEC infection in rats that had been pre‑colonized with the Lactobacillus strains, while most of EHEC infected rats were died (90%).  The

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
الأستاذ
Teaching-learning design according to constructivist theory models and its impact on the achievement of chemistry among second-year intermediate school female students
...Show More Authors

Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
A Computerized Integrated System for Geodetic Networks Design
...Show More Authors

This research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Al-mustansiriyah Journal Of Science
A Transfer Learning Approach for Arabic Image Captions
...Show More Authors

Publication Date
Fri Dec 29 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Smartphone -Based Model for Human Activity Recognition
...Show More Authors

Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Wearable Detection Systems for Epileptic Seizure: A review
...Show More Authors

The seizure epilepsy is risky because it happens randomly and leads to death in some cases. The standard epileptic seizures monitoring system involves video/EEG (electro-encephalography), which bothers the patient, as EEG electrodes are attached to the patient’s head.

Seriously, helping or alerting the patient before the seizure is one of the issue that attracts the researchers and designers attention. So that there are spectrums of portable seizure detection systems available in markets which are based on non-EEG signal.

The aim of this article is to provide a literature survey for the latest articles that cover many issues in the field of designing portable real-time seizure detection that includes the use of multiple

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Hybrid Controller for a Single Flexible Link Manipulator
...Show More Authors

In this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra

... Show More
View Publication Preview PDF
Crossref