The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management and decision making. The application of Water Quality Index (WQI) with sixteen physicochemical water quality parameters was performed to evaluate the quality of Tigris River water for drinking usage. This was done by subjecting the water samples collected from eight stations in Baghdad city during the period 2004-2010 to comprehensive physicochemical analysis. The sixteen physicochemical parameters included: Turbidity,
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management and decision making. The application of Water Quality Index
(WQI) with sixteen physicochemical water quality parameters was performed to evaluate the quality of Tigris River water for drinking usage. This was done by subjecting the water samples collected from eight stations in Baghdad city during the period 2004-2010 to comprehensive physicochemical analysis. The sixteen physicochemical parameters included: Turbidity, A
Water quality of Al-Gharraf River, which considered the main branch of Tigris River south of Iraq was examined using the Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI) for aquatic life protection and irrigation. Water samples were collected monthly from five sampling stations during 2013-2014 and 17 physicochemical parameters were analyzed: Temperature, hydrogen ion concentration (pH), electrical conductivity, dissolved oxygen, turbidity, alkalinity, chloride, calcium, magnesium, sulfate, phosphate, nitrate, sodium, lead, cadmium, nickel and zinc.
The model classified water of Al-Gharraf River as poor for aquatic life protection and fair for irrigation with seasonal overall WQI value of 30-39 and among
The current study aims to assess the water quality of the Al-Diwaniyah River in the city of Al-Diwaniyah to drink in terms of chemical properties and heavy metals and their impact on the health of the local population. The results showed that most of the parameters in the river water are of low concentrations due to the limited human activities in polluting the river water. The study concluded that the water quality is suitable for drinking depending on major cations and anions in all seasons. The Heavy Metal Pollution Index (HPI) showed that the river water was clean and safe, except two slightly polluted samples. The study concluded that river water for drinking or various domestic uses does not pose any danger to human heal
... Show MoreThe water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not been met du
... Show MoreThe water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not
... Show MoreThe present study deals with the assessment of water Quality Index to theAl-
Khadhimiya Groundwater city, by collection groundwater from 13wells during four
seasons, subjecting the samples to a comprehensive physicochemical analysis. The
13 parameters have been considered: pH, total hardness, calcium, magnesium,
turbidity, nitrate, electrical conductivity, total dissolved solid, Sulfate, Chloride,
zinc, manganic, and iron, that are used for calculating the WQI. From the result
shown, the most groundwater quality lies in Unfit for human drinking purpose. The
wells (1 and 11) and wells (3 and 10) were a bad water quality for drinking purpose
since they lie in poor and in very poor respectively according to the WQI.
This study was performed on the Tigris River (Baghdad city section) during the period between December 2016 and December 2018 to assess seasonal variation in water quality using the Overall Index of Pollution (OIP). The OIP is one of the reliable tools for the assessment of surface water quality. To calculate OIP-values, eight parameters were measured ( pH, Dissolved Oxygen "DO", Biological Oxygen Demand "BOD", Total Dissolved Solid "TDS", Total Hardness "TH", calcium "Ca", Sulphate "SO4" and Alkalinity). The results showed the anthropogenic activities impact of Baghdad population that directly discharge of "inadequate treated" waste water to the river. OIP values were acceptable (1˃OIP˃ 1.7) in 2011, 2012, 2013 and 2018. However, in
... Show MoreIn the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009) to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality parameters
... Show More