This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
Background: Debonding and fracture of artificial teeth from denture bases are common clinical problem, bonding of artificial teeth to heat cure acrylic and high impact heat cure acrylic denture base materials with autoclave processing method is not well known. The aim of this study was to evaluate the effect of autoclave processing method on shear bond of artificial teeth to heat cure denture base material and high impact heat cure denture base material. Materials and methods: Heat polymerized (Vertex) and high impact acrylic (Vertex) acrylic resins were used. Teeth were processed to each of the denture base materials after the application of different surface treatments. The sample (which consist of artificial tooth attached to the dentur
... Show MoreMeta-heuristic algorithms have been significantly applied in addressing various real-world prediction problem, including in disease prediction. Having a reliable disease prediction model benefits many parties in providing proper preparation for prevention purposes. Hence, the number of cases can be reduced. In this study, a relatively new meta-heuristic algorithm namely Barnacle Mating Optimizer (BMO) is proposed for short term dengue outbreak prediction. The BMO prediction model is realized over real dengue cases data recorded in weekly frequency from Malaysia. In addition, meteorological data sets were also been employed as input. For evaluation purposes, error analysis relative to Mean Absolute Percentage Error (MAPE), Mean Square Err
... Show MoreThis research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na
... Show MoreThis work characterizes the fractographic features of the neat epoxy and ZrO2 epoxy nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO2 nanoparticles on tensile performance and failure mechanism for ZrO2 epoxy nanocomposites. The tensile test results show that the addition of ZrO2 nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to increase the tensile strength about 40% for optimal content of ZrO2 nanop
... Show MoreThe In this experimental study, natural stone powder was utilized to improve a cohesive soil’s compaction and strength properties. According to the significant availability of limestone in the globe, it has been chosen for the purpose of the study, in addition to considering the existing rock industry massive waste. Stone powder was used in percentages of 4, 8, 12, 16% replaced from the soil weight in dry state. Some of cohesive soil’s consistency, shear, and compaction properties were depicted after improvement. The outcomes yielded in significant amendments in the experimented geotechnical properties after stone powder addition considering 60 days curing period. Cohesion and friction angle were notably increased by
... Show Morehe paper presents the results of exposure of normal concrete to high temperatures (400 and 700°C). In addition to the exposure of steel reinforcement bar Ø 12 mm, where two types of steel reinforcement burning situations were performed. Directly exposed to high temperatures (400 and 700°C) and others were covered by concrete layer (15 mm). From the experimental results of fire exposure for 1 hour of 400 and 700°C and gradually cooled, it was found that the residual average percentage of compressive strength of concrete was 85.3 and 41.4%, while the residual average percentage of modulus of elasticity of concrete was 75 and 48%, respectively. The residual average percentage of yielding tensile stress (Ø 12 mm) after burning and cooling
... Show MoreIn recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T
... Show MoreOne of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show More