Preferred Language
Articles
/
Uhe7l5MBVTCNdQwCTdbp
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.

Scopus Crossref
View Publication
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
On Bayesian Estimation of System Reliability in Stress – Strength Model Based on Generalized Inverse Rayleigh Distribution
...Show More Authors
Abstract<p>The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.</p>
View Publication
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Structures Congress 2025
Encased Pultruded I-GFRP Beam under Impact Loading
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Prediction of pore and fracture pressure using well logs in Mishrif reservoir in an Iraqi oilfield
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Assessing Tensile and Shear Properties of Recycled Sustainable Asphalt Pavement
...Show More Authors

Hot mix recycling of asphalt pavements is increasingly being used as one of the major rehabilitation methods by various highway agencies. Besides general savings in costs and energy expended, it also saves our natural resources and environment.  Recycling process presents a sustainable pavement by using the old materials that could be reclaimed from the pavement; these materials could be mixed with recycling agents to produce recycled mixtures. The important expected benefits of recycling process are the conservation of natural resources and reduction of environmental impact. The primary objectives of this work are evaluating the Tensile and Shear Properties of recycled asphalt concrete mixtures, In addition to the

... Show More
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
...Show More Authors
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Application of Neural Network in the Identification of the Cumulative Production from AB unit in Main pays Reservoir of South Rumaila Oil Field.
...Show More Authors

A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited g

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 23 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
On the dynamical behavior of an eco-epidemiological model
...Show More Authors

The aim of this article is to study the dynamical behavior of an eco-epidemiological model. A prey-predator model comprising infectious disease in prey species and stage structure in predator species is suggested and studied. Presumed that the prey species growing logistically in the absence of predator and the ferocity process happened by Lotka-Volterra functional response. The existence, uniqueness, and boundedness of the solution of the model are investigated. The stability constraints of all equilibrium points are determined. The constraints of persistence of the model are established. The local bifurcation near every equilibrium point is analyzed. The global dynamics of the model are investigated numerically and confronted with the obt

... Show More
Preview PDF
Scopus (1)
Scopus Clarivate
Publication Date
Sun Jul 25 2021
Journal Name
Natural Resources Research
Effect of Water Flooding on Oil Reservoir Permeability: Saturation Index Prediction Model for Giant Oil Reservoirs, Southern Iraq
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref