This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
This study examines the structural performance of concrete-encased pultruded Glass Fiber Reinforced Polymer (GFRP) I-sections with shear connections. It specifically focuses on how different parameters affect the latter’s ductility, flexural strength, and load-carrying capacity. The key variables studied include various shear connector types, spacing, and geometries, as well as the compressive strength of concrete and the properties of GFRP. The finite element modeling and experimental validation show that the shear connectors significantly improve the ductility, ultimate capacity, and load transmission efficiency. The present review emphasizes that the shear connectors greatly enhance the structural performance when they are prop
... Show MoreAbstract:
Objectives: The present study aims to evaluate effectiveness of educational program the nurses' knowledge towards early prediction of acquired weakness in the intensive care unit.
Methodology: A pre-experimental study design (comparison of two groups), which was achieved through the pre and post-test method for the study sample through the application of an educational program in the intensive care unit of Al-Zahra Teaching Hospital in Kut city, Wasit Governorate. The study was conducted for the period from 28th April 2022 to 15th August 2022 by selecting a purposive (non-probability) sample for this study. The study sample size was (52) nu
... Show MoreFlexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreStructural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi
As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie
... Show MoreThe aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show MoreThe total and individual multipole moments of magnetic electron scattering form factors in 41Ca have been investigated using a widely successful model which is the nuclear shell model configurations keeping in mind of 1f7/2 subshell as an L-S shell and Millinar, Baymann, Zamick as L-S shell (F7MBZ) to give the model space wave vector. Also, harmonic oscillator wave functions have been used as wave function of a single particle in 1f7/2 shell. Nucleus 40Ca as core closed and Core polarization effects have been used as a corrective with first order correction concept to basic computation of L-S shell and the excitement energy has been implemented with 2ћω. The
... Show More