Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreKeys for 22 species representing 10 genera of Thripidae were provided collection of
samples carried out during 1999-2001 in different localities in the middle of Iraq. Of them
four species are described as new to science, Frankliniella megacephala sp. nov; Retithrips
bagdadensis sp. nov; Chirothrips imperatus sp. nov; Taeniothrips tigridis sp. nov; Another
fourteen species are recorded for the first time in Iraq; Thrips meridionalis (Pri.);
Microcephalothrips abdominils (Crawford Scolothrips sexmaculatus (Pergande),);Scolothrips
pallidus (Beach); Scritothrips mangiferae Pri.; Frankliniella tritici Bagnall; Frankliniella
schultzie Trybom; Frankliniella unicolor Morgan; Retithrips aegypticus Marchal; Retithrips
java
In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.
The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis
... Show MoreThe High Power Amplifiers (HPAs), which are used in wireless communication, are distinctly characterized by nonlinear properties. The linearity of the HPA can be accomplished by retreating an HPA to put it in a linear region on account of power performance loss. Meanwhile the Orthogonal Frequency Division Multiplex signal is very rough. Therefore, it will be required a large undo to the linear action area that leads to a vital loss in power efficiency. Thereby, back-off is not a positive solution. A Simplicial Canonical Piecewise-Linear (SCPWL) model based digital predistorters are widely employed to compensating the nonlinear distortion that introduced by a HPA component in OFDM technology. In this paper, the genetic al
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show More