واحدة من أكثر مواد السيراميك الهيكلية الواعدة هي كربيد السيليكون(SiC) ، حيث له خصائص حرارية وكهروميكانيكية ممتازة. هذه الخصائص مفيدة ل CMC لتعزيز أداء المركب خاصة عند إضافات النانو المتكاملة. في هذا البحث, تم تصنيع مركب SiC من SiC بثلاثة تركيزات مع ZnO و Si. تم اختبار الخواص المغناطيسية لجميع المخاليط باستخدام مراقبة العينة الاهتزازية (VSM). تم تلبيد العينات الخضراء في فرن التلبيد عند 1600 درجة مئوية في بيئة النيتروجين. تم اختبار جميع المركبات التي تم الحصول عليها وتوصيفها باستخدام تقنيات و توصيفات مختلفة مثل حيود الأشعة السينية، ومورفولوجيا السطح تمت باستخدام FESEM، ومحلل الشبكة لاختبار الخصائص العازلة للعينات. بناء على بيئة التلبيد، تم اكتشاف نيتريد السيليكون في المركب بسبب عملية النتردة على طول المركب. من ناحية أخرى، تم حساب الخصائص المغناطيسية والامتصاصية لجميع مركبات SiC. تعتبر الخصائص العازلة عالية حيث يميل المركب إلى أن يكون عاكسا في نطاق التردد المنخفض و نافذ كلما زاد التردد على طول نطاق التردد.
In this study, polymeric composites were prepared from unsaturated polyester as a base material with glass powder (fluorescent) in different weight ratios (4, 6, 8, 10,and 11%) as a support material and after comparison before and after reinforcement of the prepared composites, an increase was found. In the values of mechanical properties (hardness, compressive strength), the shock resistance values decreased, but an increase in temperature leads to an increase in the values of shock resistance, as well as the values of compressive strength And it reduces the hardness value.
This paper describes a microcontroller-based function generator system. By the function generator sine wave, square wave, quasi-square wave, saw-tooth and triangular waveforms are generated over a wide frequency range according to user requirements. By utilizing processing capabilities of the microcontroller the hardware is minimized exceedingly. The output waveform shapes are digitally-controlled to achieve the required wave shape. The single chip microcomputer of waveform generation equipment offers the possibility of improvements in manufacture reliability, maintenance and servicing and increased control flexibility. The system is built and tested. The results of test were satisfactory and appreciated by test engineers at different ce
... Show MoreA series of experiments have been taken out to test the validity of the effect of Aluminum hydrate on its interaction with Aluminum during sintering of aluminum metal matrix. The approach has been shown to be valid and several compositions have been fabricated. The alumina hydrate particle size and the amount of alumina hydrate in the composites are also shown to have an influence on the extent of densification.
The densities for all sintered specimens were measured. It was found that density increases as compaction pressure increases, the density decreases as particles size increases. At 400 MPa there is an optimum particles size which is (90-125) µm to reach maximum density and the density decreases as volume fraction increase
... Show MoreAlloy of (HgTe) has been prepared succesful in evacuated qurtz ampoule at pressure 4×10-5torr, and melting temperature equal to 823K for five days. Thin films of HgTe of thickness 1μm were deposited on NaCl crystal by thermal evaporation technique at room temperature under vacuum about 4×10-5torr as well as investiagtion in the optical porperties included (absorption coefficient , energy gap) of HgTe films and The optical measurements showed that HgTe film has direct energy gap equal to 0.05 eV. The optical constants (n, k, εr, εi) have been measured over will range (6-28)μm.
Grabisch and Labreuche have recently proposed a generalization of capacities, called the bi-capacities. Recently, a new approach for studying bi-capacities through introducing a notion of ternary-element sets proposed by the author. In this paper, we propose many results such as bipolar Mobius transform, importance index, and interaction index of bi-capacities based on our approach.
planning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show More