Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
This research includes the application of non-parametric methods in estimating the conditional survival function represented in a method (Turnbull) and (Generalization Turnbull's) using data for Interval censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy and age is continuous variable, The algorithm of estimators was applied through using (MATLAB) and then the use average Mean Square Error (MSE) as amusement to the estimates and the results showed (generalization of Turnbull's) In estimating the conditional survival function and for both treatments ,The estimated survival of the patients does not show very large differences
... Show MoreConsidering the expanding frequency of breast cancer and high incidence of vitamin D3 [25(OH)D3] insufficiently, this investigate pointed to explain a relation between serum [25(OH)D3] (the sunshine vitamin) level and breast cancer hazard. The current study aimed to see how serum levels of each [25(OH)D3], HbA1c%, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were affected a woman’s risk of getting breast cancer. In 40 healthy volunteers and 69 untreated breast cancer patients with clinical and histological evidence which include outpatients and hospitalized admissions patients at the Oncology Center, Medical City / Baghdad - Iraq. Venous blood samp
... Show MoreObjective(s): Biocompatibility, non-toxicity, minimal allergenicity, and biodegradability are all characteristics of chitosan. Other biological properties of chitosan have been reported, including antitumor, antimicrobial and antioxidant activities. This research aim is the synthesis of drug compounds by preparation and characterization of polymer chitosan Schiff base and chitosan Schiff base / Poly vinyl alcohol / poly vinyl pyrrolidone Nanocomposite and study applications (anticancer cell line, antimicrobial agents). Methods: Chitosan Schiff base was prepared from the reaction of chitosan with carbonyl group of 4-nitro benzaldehyde. Polymer blend have been prepared by solution casting method. Chitosan Schiff base mixing with PVA and PVP
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Evaluation of Dot. ELISA test for Diagnosis Visceral Leishmaniasis in Infected Children
For the first time in Iraq, this study was conducted to evaluate the usefulness of Dot.ELISA, for detecting anti - Leishmania donovani antibodies in serum samples from suspected patient (children under 8 years ) with Visceral Leishmaniasis V.L.. Sera from 73 V.L. , 60 Healthy controls, and 57 patient with other parasitic diseases other than V.L. (Amoebiasis, Giardiasis , Toxoplasmosis, Schistosomiasis , Hydatidosis, Ascariasis , Lupus Erythromatosus , Viral Hepatitis, and Cutaneous Leishmaniasis) were examined. Anti Leishmania donovani antibodies detected in 71 out of 73 suspected Visceral Leishmaniasis . Data of this study showed that infection in male group was more than female group. Result o
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).