Preferred Language
Articles
/
R4ZTBIYBIXToZYALa3dJ
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Medical Research & Health Sciences
Assessing the Period between Diagnosis of Breast Cancer and Surgical Treatment among Mastectomized Female Patients in Iraq
...Show More Authors

Introduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu Oct 17 2024
Journal Name
South Eastern European Journal Of Public Health
Evaluation of Lifestyle for Women with Breast Cancer
...Show More Authors

Introduction: Breast cancer is a significant global health concern, affecting millions of women worldwide. While advancements in diagnosis and treatment have improved survival rates, the impact of this disease extends beyond physical health. It also significantly influences a woman's lifestyle and overall well-being. Objectives: The current study intends to analyze the lifestyle of breast cancer patients who are receiving therapy or are being followed up at the Oncology Teaching Hospital in Medical City, Baghdad, Iraq. Method: The present study uses a descriptive design with an application of an evaluation approach. A convenience sample of 100 women with breast cancer was selected from the Teaching Oncology Hospital at the Medical C

... Show More
View Publication
Crossref
Publication Date
Tue Sep 19 2017
Journal Name
Journal Of Neoplasm
The stage of breast cancer at the time of diagnosis: correlation with the clinicopathological findings among Iraqi patients
...Show More Authors

Background: Breast cancer is the most frequently diagnosed malignancy and the second leading cause of mortality among women in Iraq forming 23% of cancer related deaths. The low survival from the disease is a direct consequence to the advanced stages at diagnoses. Aim: To document the composite stage of breast cancer among Iraqi patients at the time of diagnosis; correlating the observed findings with other clinical and pathological parameters at presentation. Patients and Methods: A retrospective study enrolling the clinical and pathological characteristics of 603 Iraqi female patients diagnosed with breast cancer. The composite stage of breast cancer was determined according to UICC TNM Classification System of Breast Cancer and the Ameri

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Artificial Intelligence Based Deep Bayesian Neural Network (DBNN) Toward Personalized Treatment of Leukemia with Stem Cells
...Show More Authors

The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Nov 09 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Promoting Clinical Breast Examination as A screening Tool for Breast Cancer in Iraq
...Show More Authors

Breast cancer constitutes about one fourth of the registered cancer cases among the Iraqi population (1)
and it is the leading cause of death among Iraqi women (2)
. Each year more women are exposed to the vicious
ramifications of this disease which include death if left unmanaged or the negative sequels that they would
experience, cosmetically and psychologically, after exposure to radical mastectomy.
The World Health Organization (WHO) documented that early detection and screening, when coped
with adequate therapy, could offer a reduction in breast cancer mortality; displaying that the low survival rates
in less developed countries, including Iraq, is mainly attributed to the lack of early detection programs couple

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Impact of Psychological Distress in Women upon Coping with Breast Cancer: Coping with Breast Cancer
...Show More Authors

Objective(s): To determine the impact of psychological distress in women upon coping with breast cancer.

Methodology: A descriptive design is carried throughout the present study. Convenient sample of (60) woman with breast cancer is recruited from the community. Two instruments, psychological distress scale and coping scale are developed for the study. Internal consistency reliability and content validity are obtained for the study instruments. Data are collect through the application of the study instruments. Data are analyzed through the use of descriptive statistical data analysis approach and inferential statistical data analysis approach.

Results: The study findings depict that women with breast cancer have experien

... Show More
View Publication Preview PDF