Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.
The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreLetrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.
Several methods have been developed for routing problem in MANETs wireless network, because it considered very important problem in this network ,we suggested proposed method based on modified radial basis function networks RBFN and Kmean++ algorithm. The modification in RBFN for routing operation in order to find the optimal path between source and destination in MANETs clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. The re
... Show MoreBackground: Breast cancer is the first one among Iraqi females. Most of them present later for diagnosis. Early detection center in tertiary hospital practice uses FNAB for early diagnosis. Publications on accuracy of this detection are scarce.
Objective: To test the accuracy of FNAB in breast lump diagnosis.
Methods: Diagnostic test accuracy study, on 204 women with breast lump, attending the oncology department in 2017.
Results: Fine-needle aspiration biopsy diagnosis of histologically malignant cases were, malignant in 89 (87.3%), suspicious of malignancy in 5 (4.9%), and benign in 4 (3.9%). Complete sensitivity was 87.3%, and specificity
... Show MoreToday, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreThe current study was conducted in the period extending from November 2018 to October 2019 and designed as a case-control study and aimed to assess the seroprevalence of HCMV. However, a total number of 91serum specimens were collected to fulfill this purpose from females (71 breast cancer patients, and control group of 20 females) attending Al-Amal hospital for cancer management and Baghdad teaching hospital and the practical part was performed in College of Science, University of Baghdad. The study protocol was approved by the Ethics Committee at the Department of Biology (Reference: BEC/0220/0011). The immunological part for evaluation of seroprevalence of HCMV was accomplished by ELISA technique which revealed that anti-HCMV IgG was sco
... Show MoreBackground: Deep vein thrombosis is a multi causal disease and its one of most common venous disorder, but only one quarter of the patients who have signs and symptoms of a clot in the vein actually have thrombosis and need treatment .The disease can be difficult to diagnose. Venous ultrasound in combination with clinical finding is accurate for venous thromboembolism, its costly because a large number of patients with suspicious signs and symptoms. Venography still the gold standard for venous thromboembolism but it is invasive. The D-dimer increasingly is being seen as valuable tool rolling out venous thromboembolism and sparing low risk patients for further workup.Objectives: this study has designed the role of D-dimer to confirm diag
... Show More