Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
The internal administrative spaces of the interior designer formed an obsession for their development and for finding solutions and treatments to advance to enhance the state of adaptation for their employees by providing a healthy, appropriate and sound environment for work and production. . The first chapter focuses on laying theoretical foundations to show what health materials are used in the administrative spaces of the training directorates of the Ministry of Education in Baghdad. The second chapter dealt with the knowledge of health materials, their impact and effectiveness in the interior space, and the variables of their functional characteristics and their work in the interior spaces in a way that enhances the development of
... Show MoreBackground: The main objective was to compare the outcome of single layer interrupted extra-mucosal sutures with that of double layer suturing in the closure of colostomies.
Subjects and Methods: Sixty-seven patients with closure colostomy were assigned in a prospective randomized fashion into either single layer extra-mucosal anastomosis (Group A) or double layer anastomosis (Group B). Primary outcome measures included mean time taken for anastomosis, immediate postoperative complications, and mean duration of hospital stay. Secondary outcome measures assessed the postoperative return of bowel function, and the overall mean cost. Chi-square test and student t-test did the statistical analysis..
Resu
... Show MoreWhen the number of confirmed coronavirus disease cases rose in Iraq in the middle of February 2021, the Iraqi government performed a closure approach to constrain mobility and factory operations and enforce social distancing. In this research, the concentrations of air components (PM2.5, PM10, nitrogen dioxide (NO2) and ozone (O3)), which represent herein the degree of air quality index, were recorded, drawn and evaluated over central (Baghdad, the capital), northern (Kirkuk Province) and southern (Basra Province) Iraq before and during the closure. The experimental duration of this research was 6 months (from 1 January 2021 to 30 June 2021), which
... Show MoreA space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Abstract. This study gives a comprehensive analysis of the properties and interactions of fibrewise maximal and minimal topological spaces. Fibrewise topology extends classical topological concepts to structured spaces, providing a thorough understanding of spaces that vary across different dimensions. We study the basic theories, crucial properties, and characterizations of maximal and minimal fibrewise topological spaces. We investigate their role in different mathematical contexts and draw connections with related topological concepts. By providing exact mathematical formulations and comprehensive examples, this abstract advances the fields of topology and mathematical analysis by elucidating the unique properties and implications of fib
... Show More