Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
In this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally s
... Show MoreIn this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.
In this thesis, we introduced some types of fibrewise topological spaces by using a near soft set, various related results also some fibrewise near separation axiom concepts and a fibrewise soft ideal topological spaces. We introduced preliminary concepts of topological spaces, fibrewise topology, soft set theory and soft ideal theory. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise soft near topological spaces, Also, we show the notions of fibrewise soft near closed topological spaces, fibrewise soft near open topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces. On the other hand, we studied fibrewise soft near forms of the more essent
... Show MoreIn this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
0
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.