Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect detection, including temperature analysis and image processing algorithms, are thoroughly presented. The factors contributing to the effectiveness of thermography cameras are explored, along with their advantages over traditional inspection methods. The literature review highlights the diverse applications of thermography cameras in fault detection. The review highlights the remarkable transformation brought by thermal camera technology in mechanical system fault detection, leading to improved maintenance practices. These cameras can detect unseen irregularities, enable non-invasive testing and support hands-on system maintenance, making them indispensable tools for ensuring mechanical systems operate efficiently, reliably and safely. With the continuous advancement of technology, the integration of Industry 4.0 and IoT technologies will further enhance the capabilities of thermal cameras, ensuring elevated performance across different domains. In electrical systems, thermal cameras allow for the early identification of faults, enabling proactive maintenance to mitigate risks. Additionally, by assessing structural integrity, thermal cameras can detect thermal and insulation inefficiencies, leading to improved energy efficiency.
In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.
In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.
The goal of our study is to perform detailed multiband surface photometry of the spiral galaxy NGC 4448 and its brightest star-forming regions. The structure and composition of the stellar population in the surface brightness galaxy NGC 4448 was studied using BVR CCD photometry. The observations were obtained on the 1.88 m optical telescope of Kottamia Astronomical Observatory (KAO), Egypt. A two-dimensional decomposition of the galaxy bulge and disk components is carried out. A powerful star forming region is observed near the galactic center. Based on the positions of the various components of the galaxy in two color diagrams. From the observations, the surface brightness profiles, Ellipticity profiles, position angle profiles and colo
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreTested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
The main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative
... Show MoreThe gamma camera, along with SPECT and PET scanners, is one of the main imaging technologies in nuclear medicine. A collimator is typically constructed from tungsten to provide high absorption of gamma photon energies. It has a hole or holes for imaging. Gamma rays from a radioactive source within the body are emitted in all directions, while the photons required constructing an image travel through the hole. A scintillator is the most common material used to convert the high energy of gamma radiation into a lowenergy optical photon. These detectors are one of the primary secrets to radio-diagnosis in nuclear medicine. The photomultiplier tube (PMT) is a versatile device with extraordinarily highly sensitivity and response. A typical photom
... Show More