Preferred Language
Articles
/
MhadBYcBVTCNdQwCGy94
Colour Recognizing Robot Arm Equipped with a CMOS Camera and an FPGA

In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.

View Publication
Publication Date
Thu Nov 17 2016
Journal Name
International Journal Of Computer Applications
Colour Recognizing Robot Arm Equipped with a CMOS Camera and an FPGA

In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.

Crossref (1)
Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Journal Of Physics: Conference Series
Design and Implementation of a Moving Robot Equipped with an Arm and an FPGA to Deliver Objects between Two Positions
Abstract<p>In this paper a system is designed and implemented using a Field Programmable Gate Array (FPGA) to move objects from a pick up location to a delivery location. This transportation of objects is done via a vehicle equipped with a robot arm and an FPGA. The path between the two locations is followed by recognizing a black line between them. The black line is sensed by Infrared sensors (IR) located on the front and on the back of the vehicle. The Robot was successfully implemented by programming the Field Programmable Gate Array with the designed system that was described as a state diagram and the robot operated properly.</p>
Scopus Crossref
Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Concealing a Secret Message in a Colour Image Using an Electronic Workbench

Steganography is the art of concealing security data in media, such as pictures, audio, video, text, and protocols. The objective of this paper is hiding a secret message in a colour image to prevent an attacker from accessing the message. This is important because more people use the Internet all the time and network connections are spread around the world. The hidden secret message uses two general algorithms that are embedded and extracted. This paper proposes a new algorithm to conceal a secret message in a colour image in LSB. This algorithm includes three phases: 1) dividing the colour image into a number of blocks, 2) concealing the secret message, and 3) transmitting the stego-image from the sender in a multiplexer network and re

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Robot Arm Path Planning Using Modified Particle Swarm Optimization based on D* algorithm

Abstract

Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al

... Show More
Crossref (8)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Sep 29 2023
Journal Name
International Journal Of Applied Mechanics And Engineering
Fuzzy logic control of active suspension system equipped with a hydraulic actuator

In this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacemen

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Mar 01 2008
Journal Name
Al-khwarizmi Engineering Journal
Minimizing error in robot arm based on design optimization for high stiffness to weight ratio

In this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.

A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Innovative Food Science &amp; Emerging Technologies
Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
View Publication