At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance penalty. Due to the massive calculations required by conventional public-key and secret encryption methods, information security in this limited context calls for light encryption techniques. In many applications involving sensor networks, security is a crucial concern. On the basis of traditional cryptography, a number of security procedures are created for wireless sensor networks. Some symmetric-key encryption techniques used in sensor network setups include AES, RC5, SkipJack, and XXTEA. These algorithms do, however, have several flaws of their own, including being susceptible to chosen-plaintext assault, brute force attack, and computational complexity.
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreIn this work, an optical fiber biomedical sensor for detecting the ratio of the hemoglobin in the blood is presented. A surface plasmon resonance (SPR)-based coreless optical fiber was developed and implemented using single- and multi-mode optical fibers. The sensor is also utilized to evaluate refractive indices and concentrations of hemoglobin in blood samples, with 40 nm thickness of (20 nm Au and 20 nm Ag) to increase the sensitivity. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.
This paper analysed the effect of electronic internal auditing (EIA) based on the Control Objectives for Information and Related Technologies (COBIT) framework. Organisations must implement an up-to-date accounting information system (AIS) capable of meeting their auditing requirements. Electronic audit risk (compliance assessment, control assurance, and risk assessment) is a development by Weidenmier and Ramamoorti (2006) to improve AIS. In order to fulfil the study’s objectives, a questionnaire was prepared and distributed to a sample comprising 120 employees. The employees were financial managers, internal auditors, and workers involved in the company’s information security departments in the General Company for Electricity D
... Show MoreThe aim of the research is to identify the extent of the ability to ensure the integrated reports by the auditor in verifying the credibility of these reports, and their implications for the benefit of all parties dealing with the economic unit, as well as measuring the impact of the assurance procedures followed by the auditors and their role in confirming these reports.
The research methodology was designed after studying the previous literature related to the research variables, and then the relationship between these variables was tested, through the use of a questionnaire list. A questionnaire targeting the community of auditors in the local environment, and the results of the study wer
... Show MoreBackground: The aim of this study was to determine phototoxic effect of visible blue light on anaerobic periodontal pathogens namely Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Materials and methods: Strains of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were isolated from pockets of systemically healthy patients aged between 35-55 years old with pocket depths of 5-6 mm, the bacteria cultured on special blood Agar plates solid media, then subjected to visible blue light emitted from commercially available light cure devise (LED curing light); that emits blue light (400-500nm) of 1000mw energy at different periods of time exposures, then the CFU of each plate was measured by direct colony count
... Show MoreThis study compared in vitro the microleakage of a new low shrink silorane-based posterior composite (Filtek™ P90) and two methacrylate-based composites: a packable posterior composite (Filtek™ P60) and a nanofill composite (Filtek™ Supreme XT) through dye penetration test. Thirty sound human upper premolars were used in this study. Standardized class V cavities were prepared at the buccal surface of each tooth. The teeth were then divided into three groups of ten teeth each: (Group 1: restored with Filtek™ P90, Group 2: restored with Filtek™ P60, and Group 3: restored with Filtek™ Supreme XT). Each composite system was used according to the manufacturer's instructions with their corresponding adhesive systems. The teeth were th
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show More