Preferred Language
Articles
/
zxZRFIkBVTCNdQwCT4UI
The classification of fetus gender based on fuzzy C-mean using a hybrid filter
...Show More Authors

This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on real data from the Kadhimiya teaching hospital shows that the proposed CUHF is a better method when compared to the accuracy of the other integrated filters.

Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
A Hybrid Coefficient Decimation- Interpolation Based Reconfigurable Low Complexity Filter Bank for Cognitive Radio
...Show More Authors

Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Use of learning methods for gender and age classification based on front shot face images
...Show More Authors

Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Machine Learning And Data Mining In Pattern Recognition
A New Strategy for Case-Based Reasoning Retrieval Using Classification Based on Association
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jun 04 2024
Journal Name
Int. J. Operational Research
Pascal’s triangle graded mean defuzzification approach for solving fuzzy assignment models by using pentagonal fuzzy numbers
...Show More Authors

The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal’s triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely deve

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Technique For Image De-blurring Using Adaptive Wavelet Lagrange Fuzzy Filter
...Show More Authors

A new de-blurring technique was proposed in order to reduced or remove the blur in the images. The proposed filter was designed from the Lagrange interpolation calculation with adjusted by fuzzy rules and supported by wavelet decomposing technique. The proposed Wavelet Lagrange Fuzzy filter gives good results for fully and partially blurring region in images.
 

View Publication Preview PDF