In this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA that is associated with a number of diseases including malignancies. Additionally, the manufactured NAC-CdTe core with CdS shell and ZnS shell QDs were further characterized by high-resolution transmission using field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence (EDX), X-ray diffraction (XRD), infrared spectrum (IR), UV-vis absorbance, photoluminescence (PL) and absorbency intensity using the fully automatic ELISA. The XRD results revealed the formation of NAC-CdTe/CdS/ZnS QDs with a grain size of 5.7 nm. While EDX assay emphasizes the compound content of Cd, S, Zn and Te elements. Whereas SEM test’s findings propose the spherical size of NAC- CdTe/CdS/ZnS QDs within the range of 10–40 nm. The demonstrated mono-dispersed lattice structure of NAC-CdTe core with CdS shell and ZnS shell QDs has superior PL emission properties at [Formula: see text] of [Formula: see text]600 nm and UV-Vis absorption bands at 350 nm. Overall, this study suggests that the synthesized QDs could be employed in developing optical biosensors for a variety of biomedical applications to improve early detection of diseases marked by damaged DNA profile including cancers.
In this research the Inter-Particle Expectation Values have been studied for atomics Helium (He) and Beryllium (Be) also for He-like ions, Be-like ions (Li-1, B+1? Li+1, Be+2, B+3) by using Hartree-Fock wave functions, We compared the results to some ions which have the same atomic number from each group with atomic number, We compared the results with published calculations to the last studied .
A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreIn this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fibe
... Show MoreA quantum mechanical description of the dynamics of non-adiabatic electron transfer in metal/semiconductor interfaces can be achieved using simplified models of the system. For this system we can suppose two localized quantum states donor state |D› and acceptor state |A› respectively. Expression of rate constant of electron transfer for metal/semiconductor system derived upon quantum mechanical model and perturbation theory for transition between |ð·âŒª and |ð´âŒª state when the coupling matrix element coefficient is smaller than 0.025eV. The rate of electron transfer for Au/ ZnSe and Au/ZnS interface systems is evaluated with orientation free energy using a Matlap program. The
... Show MoreObjectives: This study aims to broaden our knowledge of the role of eDNA in bacterial biofilms and antibiotic-resistance gene transfer among isolates. Methods: Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were isolated from different non-repeated 170 specimens. The bacterial isolates were identified using morphological and molecular methods. Different concentrations of genomic DNA were tested for their potential role in biofilms formed by study isolates employing microtiter plate assay. Ciprofloxacin resistance was identified by detecting a mutation in gyrA and parC. Results: The biofilm intensity significantly decreased (P < 0.05) concerning S. aureus isolates and insignificantly (P > 0.05) concernin
... Show More