Preferred Language
Articles
/
OBfxfY8BVTCNdQwCsnpo
Approximately Regular Rings and Approximately Regular Modules
...Show More Authors

Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.

Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
F-Approximately Regular Modules
...Show More Authors

We introduce in this paper the concept of an approximately pure submodule as a     generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module  is approximately pure, then  is called F-approximately regular. Further, many results about this concept are given.

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Almost Pure Ideals (Submodules) and Almost Regular Rings (Modules)
...Show More Authors

     Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule).  lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
On Regular Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.

Preview PDF
Publication Date
Sun Dec 04 2011
Journal Name
Baghdad Science Journal
Approximate Regular Modules
...Show More Authors

There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules
...Show More Authors

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Almost and Strongly Almost Approximately Nearly Quasi Compactly Packed Modules
...Show More Authors

In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Quasi J-Regular Modules
...Show More Authors

Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J-  submodules as a     –  and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module     J- module if every submodule of  is quasi J-pure. Many results about this concept

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules II
...Show More Authors

An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.

View Publication Preview PDF
Publication Date
Wed Mar 27 2019
Journal Name
Iraqi Journal Of Science
Properties of J- Regular modules
...Show More Authors

The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We  study some of its basic  properties  and  by using this concept we  define the class of  J-regular modules,  where an R-module  M is called  J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved

View Publication Preview PDF