An R-module M is called a polyform module if every essential submodule of M is rational. The main objective of this paper is to introduce a new concept of modules named fully polyform modules. This kind of module is contained in the class of polyform modules. We study in detail fully polyform modules, so several properties of this concept are investigated. Other characterizations and partial characterisations (i.e., satisfied by certain conditions) of the definition of fully polyform module analogous to those known in the concept of a polyform module are given and discussed. For instance, we proved that a module M is a fully polyform module if and only if M)=0 for each P-essential submodule N of M and for each V≤M with NÍVÍM. Relationships between this class of modules and some other related concepts are discussed such as monoform, QI-monoform, essentially quasi-Dedekind, essentially prime and St-polyform modules. Moreover, useful concepts and their influence or relationships with fully polyform modules such as P-uniform and Pe-prime modules are introduced.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.
Abstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreIn this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that