Screw piles are widely used in supporting structures subjected to pullout forces, such as power towers and offshore structures, and this research investigates their performance in gypseous soil of medium relative density. The bearing capacity and displacement of a single screw pile model inserted in gypseous soil with various diameters (D = 20, 30, and 40) mm are examined in this study. The soil used in the testing had a gypsum content of 40% and the bedding soil had a relative density of 40%. To simulate the pullout testing in the lab, a physical model was manufactured with specific dimensions. Three steel screw piles with helix diameters of 20, 30, and 40 mm are used, with a total length of 500 mm. The helix is continuous over the pile's embedded depth of 400 mm. The results of tests revealed that decreasing the length to diameter (H/D) ratio resulted in a higher pullout capacity of screw piles and a lower corresponding displacement.
A recent study compared experimentally the hydraulic and thermal activity of twisted tape inserts for two types, metal foam twisted tape (MFTT) and traditional twisted tape (TTT), in a double pipe heat exchanger. The investigation goal of the innovatively designed MFTT is to enhance the heat transfer process, which provides a higher thermal enhancement factor over those of TTT under the same conditions. Heat transfer activity in terms of Nusselt number (
Conservative pipes conveying fluid such as pinned-pinned (p-p), clamped–pinned (c-p) pipes and clamped-clamped (c-c) lose their stability by buckling at certain critical fluid velocities. In order to experimentally evaluate these velocities, high flow-rate pumps that demand complicated fluid circuits must be used.
This paper studies a new experimental approach based on estimating the critical velocities from the measurement of several fundamental natural frequencies .In this approach low flow-rate pumps and simple fluid circuit can be used.
Experiments were carried out on two pipe models at three different boundary conditions. The results showed that the present approach is more accurate for est
... Show MoreThe present work intends to study of dc glow discharge were generated between pin (cathode) and a plate (anode) in Ar gas is performed using COMSOL were used to study electric field distribution along the axis of the discharge and also the distribution of electron density and electron temperature at constant pressure (P=.0.0mbar) and inter electrode distance (d=4 cm) at different applied voltage for both pin cathode system and plate anode and comparison with experimental results.
In this study, generation of elliptical gears with different teeth profiles of crowned involute, double circular arc (DCA), and combined (crowned involute with DCA) has been developed. The resulting mathematical equations have been computerized and feed to CNC end mill machine to manufacture elliptical gear models with different profiles. These models are investigated in plane polariscope to show the resulting stresses under certain load. Comparison of photo-elastic stress results shows that combined elliptical gears with DCA side as a loaded side have a minimum resulting contact stress with a reduction percentage of 40% compare with contact stresses in counterpart elliptical gear of involute profile (which is commonly u
... Show MoreIn this paper, the experiments were carried out in laboratory flotation cell treating solid fines. The effect of variables such as collector oil dosage, pine oil dosage and solid content of the feed slurry have been investigated on the flotation characteristics of low rank coal. Attempts have also been made to develop some empirical Eq. to predict the yield and ash content of concentrate with the operating variables, solids concentration, collector oil dosage, and pine oil dosage, to estimate the recovery at any operating conditions. The calculated results obtained from regression equation by correlating the variables with the yield and ash content of concentrate have been compared to study whether calculated values match closely with th
... Show MoreDetermining the aerodynamic characteristics of iced airfoil is an important step in aircraft design. The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil
... Show MoreThe present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake
... Show MoreThe present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment co
... Show More