Reducing global warming potential (GWP) of refrigerants is needed to the decrease of ozone-depleting of refrigeration systems leakages. Refrigerant R1234yf is now used to substitute R134a inside mobile air conditioning systems. Thermodynamic properties of R1234yf are similar to R134a. Also, it has a very low GWP of 4, compared to 1430 for R134a, making it a proper choice for future automobile refrigerants. The purpose of this research is to represent the main operating and performance differences between R1234yf and R134a. Experimental analysis was carried out on the automotive air conditioning system (AACS) with 3 kW nominal capacity, to test and compare the performance of R134a with R1234yf. Experiments were accomplished for both refrigerants in almost the same working conditions and procedure with a range of ambient temperature varied from 26oC to 50oC. Parameters studied were ambient temperature, type of refrigerant in the system at compressor speed 1450 rpm, and internal thermal loads of passenger room. The performance characteristics of the system, including COP and cooling capacity, were studied by changing different parameters. The results show that COP of R134a is higher than R1234yf by 12.6%, while the refrigeration effect of R134a is higher than R1234yf by 25%. This shows that R1234yf is a suitable and good candidate for drop-in replacement of R134a in AACS.
The work of this paper is an investigation to improve the condenser performance of the automobile air conditioning system by enhancing the air-side heat transfer from the condenser through the use of an air guide net installed in front of the condenser face which is basically an aluminum plate having a circular entrance shape for the air passage. The A/C system was examined under two types of test. The first test was conducted the air guide net, while the second was done with the air guide net. The performances of the A/C system under these tests were compared. For the second type of test, the experiment was carried out with three different size of air guide net, three different circular diameters (2, 3 and 3.5 cm) a
... Show MoreA mathematical model has been formulated to predict the influence of high outdoor air temperature on the performance of small scale air - conditioning system using R22 and alternative refrigerants R290, R407C, R410A. All refrigerants were investigated in the cooling mode operation. The mathematical model results have been validated with experimental data extracted from split type air conditioner of 2 TR capacity. This entailed the construction of an experimental test rig which consists of four main parts. They are, the refrigeration system, psychrometric test facility, measuring instrumentation, and auxiliary systems. The conditioned air was maintained at 25 0C dry bulb and 19 0C wet bulb for all tests. The outdoor ambient air temperatur
... Show MoreIn this paper, an experimental study of the thermal performance for hybrid solar air conditioning system was carried out, to investigate system suitability for the hot climate in Iraq. The system consists of vapor compression unit combined with evacuated tube solar collector and liquid storage tank. A three-way valve was installed after the compressor to control the direction flow of the refrigerant, either to the storage tank or directly to the condenser. The performance parameters were collected by data logger to display and record in the computer by using LabVIEW software. The results show that the average coefficient of performance of hybrid solar air conditioning system (R=1) was about 2.42 to 2.77 and the average p
... Show MoreThis paper presents an efficient methodology to design modified evaporative air-cooler for winter air-conditioning in Baghdad city as well as using it for summer air-conditioning by adding a heating process after the humidification process. laboratory tests were performed on a direct evaporative cooler (DEC) followed by passing the air on hot water through heat exchanger placed in the coolers air duct exit. The tests were conducted on the 2nd of December /2011 when the ambient temperature was 8.1°C and the relative humidity was (68%). The air flow rate is assumed to vary between 0.069 to 0.209 kg/s with constant water flow rate of 0.03 kg/s in the heat exchanger. The performance is reported in terms of effectiveness of DEC, satura
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreIn IRAQ, the air conditioners are the principal cause of high electrical demand. In summer, the outer temperature sometimes exceeds 500C which significantly effects on the A/C system performance and power consumed. In the present work, the improvement in mechanical and electrical performance of split A/C system is investigated experimentally and analytically. In this paper, performance and energy saving enhancement of a split-A/C system was experimentally investigated to be efficiently compatible with elevated temperature weathers. This improvement is accomplished via Smart Control System integrate with Proportional-Integral- Differential PID algorithm. The PIC16F877A micro-controller has been programmed with the PID and PWM c
... Show MoreIn recent years, the demand for air travel has increased and many people have traveled by plane. Most passengers, however, feel stressed due to the limited cabin space. In order to make these passengers more comfortable, a personal air-conditioning system for the entire chair is needed. This is because the human body experiences discomfort from localized heating or cooling, and thus, it is necessary to provide appropriate airflow to each part of the body. In this paper, a personal air-conditioning system, which consists of six vertically installed air-conditioning vents, will be proposed. To clarify the setting temperature of each vent, the airflow around the passenger and the operative temperature of each part of the body is investigate
... Show MoreIn Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of c
... Show MoreA novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo
... Show MoreEnhancement of the performance for hybrid solar air conditioning system was presented in this paper. The refrigerant temperature leaving the condenser was controlled using three-way valve, this valve was installed after the compressor to regulate refrigerant flow rate towards the solar system. A control system using data logger, sensors and computer was proposed to set the opening valve ratio. The function of control program using LabVIEW software is to obtain a minimum refrigerant temperature from the condenser outlet to enhance the overall COP of the unit by increasing the degree of subcooled refrigerant. A variable load electrical heater with coiled pipe was used instead of the solar collector and the storage tank to simulate the sola
... Show More