Preferred Language
Articles
/
joe-2986
EXPERIMENTAL INVESTIGATION OF LAMINAR NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH AND WITHOUT INSIDE PARTITIONS

Experimental study has been conducted for laminar natural convection heat transfer of air flow through a rectangular enclosure fitted with vertical partition. The partition was oriented parallel to the two vertical isothermal walls with different temperatures, while all the other surfaces of the enclosure were insulated. In this study a test rig has been designed and constructed to allow studying the effect of Rayleigh number, aperture height ratio, partition thickness, the position of aperture according to the side walls and according to the height, the position of the partition according to the hot wall, and partition inclination. The experiments were carried out with air as the working fluid for Rayleigh number range (5*107 – 1.3*108) and aspect ratio of (0.5). 22 different configurations of partition were used in this study these are:
a) Undivided enclosure (no – partition).
b) (21) Cork partitions of different shapes.
Empirical correlations for average Nusselt number are obtained for the different cases tested. The results show that heat transfer is independent on the partition position according to the cold wall and according to the upper or lower walls, while it shows that heat transfer is sensitive to:
1. Rayleigh number (Ra), which increase with increasing Ra.
2. Aperture height ratio (Ap=hp/H), which is found that when Ap= 5/6 (case 2,3), the reduction in heat transfer is 10.3%, while when Ap=1/2 (case 4,5), the reduction is 17.2% compared with the non partitioned enclosure.
3. Aperture position according to the height, which is found that when the aperture at the centre of the partition (case 13), the reduction in heat transfer is 16.7%, while when the aperture displaced to the upper surface (case 14), the reduction is 19% compared with the non partitioned enclosure.
4. Partition thickness (t), which is found that when t = 10 mm (case 4,5) the reduction in heat transfer is 17.2%, while when t = 150 mm (case 16) the reduction is 20.5% compared with the non partitioned enclosure.
5. Partition inclination (), which is found that the rate of heat transfer reduced with increasingas shown:
a. For = 30 toward the cold wall (case 22), the reduction in heat transfer is 18.2%.
b. For = 45 toward the cold wall (case 18), the reduction in heat transfer was 21.9%.
c. For = 60 toward the cold wall (case 20), the reduction in heat transfer is 30.2%.
d. For = 30 toward the hot wall (case 21), the reduction in heat transfer is 31.3%.
e. For = 45 toward the hot wall (case 17), the reduction in heat transfer is 40.7%.

f. For = 60 toward the hot wall (case 19), the reduction in heat transfer is 42.1%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Numerical Analysis of Laminar Natural Convection in Square Enclosure with and without Partitions and Study Effect of pPartition on the Flow Pattern and Heat Transfer

The problem of steady, laminar, natural convective flow in an square enclosure with and without partitions is considered for Rayleigh number (103-106) and Prandtl number (0.7). Vertical walls were maintained isothermal at different temperatures while horizontal walls and the partitions were insulated. The length of partition was taken constant. The number of partitions were placed on horizontal surface in staggered arrangement from (1– 3) and ratio of partition thickness (H/L= 0.033, 0.083, 0.124). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on a program in Fortran 90 with the finite difference method is obtained. Representative results illustrating the effects of the thickn

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Laminar Natural Convection in nonrectangular Enclosure with and without Fins

In the present work, steady, laminar natural convection in nonrectangular enclosures is analyzed numerically with and without fin. Vertical walls insulated while horizontal walls maintained isothermal at different temperature and the fin was placed on horizontal surface. The length of fin was equal (B/L=0.22, 0.44 and 0.66) and thickness of fin was constant. Various parameters are studied: Rayleigh number (from 104 to 107 ), Prandtl number (0.7), number of fin change from (1-3) and aspect ratio (H/L= 0.15 to 0.5). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on program in Fortran 90 with Tec plot program. The finite difference method is used. Streamlines and isotherms are prese

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Experimental Study For a Laminar Natural Convection Heat Transfer From an Isothermal Heated Square Plate With and Without Circular Hole

An experimental investigation of natural convection heat transfer from an isothermal horizontal,vertical and inclined heated square flat plates with and without circular hole, were carried out in two cases, perforated plates without an impermeable adiabatic hole "open core" and perforated plates with an impermeable adiabatic hole "closed core" by adiabatic plug. The experiments covered the laminar region with a range of Rayleih number of (1.11x106 ≤RaLo≤4.39x106 ), at Prandtle number (Pr=0.7). Practical experiments have been done with variable inclination angles from horizon (Ф=0o ,45o,90o,135oand 180o),facing upward (0o≤Ф<90o), and downward (90o
≤Ф<180o). The results showed that the temperature gradient increases whi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Laminar Natural Convection of Newtonian and Non – Newtonian Fluids Inside Triangular Enclosure

In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103Ra ≤ 105), with non-dimensional parameter (NE) of Prandtl – Eyring model ranging from (0 to 10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Mechanical Engineering Research And Developments
Numerical Investigation of Natural Convection Heat Transfer in Partially Filled Porous Enclosure Subjected to Constant Heat

Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti

... Show More
Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Natural Convection Heat Transfer from Interrupted Rectangular Fins

      Numerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (

View Publication Preview PDF
Publication Date
Mon Mar 27 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Experimental study of natural convection heat transfer on an enclosure partially filled porous medium heated from below by constant heat flux

This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperatu

... Show More
Scopus Crossref
View Publication
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Restriction Shape On Laminar Natural Convection Heat Transfer In A Vertical Circular Tube

Natural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Convection Heat Transfer Enhancement in Horizontal Channel Provided with Metal Foam Blocks

Convection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Experimental Study of Natural Convection Heat Transfer in Confined Porous Media Heated From Side

Transient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t

... Show More
Crossref
View Publication Preview PDF