insulin-like Growth Factor 1 (IGF-1) gene has been described in several studies as a candidate gene for growth. The present study attempts to identify associations between body weight traits and polymorphisms at 279 position of 5'UTR flanking region of IGF-1 gene in broiler chickens. Three hundred broiler chickens from two breeds (Cobb 500 and Hubbard F-15) were used in this study. A single nucleotide polymorphism (SNP) at 279 position of 5'UTR region of the IGF-1 gene was identified in 20.6 and 60.3% of Cobb 500 and Hubbard F-15, respectively, using the PCR-RFLP technique. Allele frequencies were 83.87 and 42.80% for the T allele and 16.13 and 57.20% for the C allele in Cobb500 and Hubbard-15 breeds, respectively. Genotype frequencies were
... Show MoreThe interaction between comet Hale-Bopp tail with the solar wind is investigated in the present paper using magneto-hydrodynamic (MHD) numerical simulation, which accounts for the presence of the interplanetary magnetic field (IMF). The simulation is based on three-dimensional Lax-Wendroff explicit scheme, providing second-order accuracy in space and time. The ions produced from the nucleus of the comet will add considerable effects on the microstructure of the solar wind, thus severely altering its physical properties. The present simulation focuses on careful analysis of these properties by means of simulating the behavior of the comet Hale-Bopp’s tail at 1 AU from the sun. These properties include the changes of the plasma density,
... Show MoreIn this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreIn this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreThe investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
One of the main techniques to achieve phase behavior calculations of reservoir fluids is the equation of state. Soave - Redlich - Kwong equation of state can then be used to predict the phase behavior of the petroleum fluids by treating it as a multi-components system of pure and pseudo-components. The use of Soave – Redlich – Kwon equation of state is popular in the calculations of petroleum engineering therefore many researchers used it to perform phase behavior analysis for reservoir fluids (Wang and Orr (2000), Ertekin and Obut (2003), Hasan (2004) and Haghtalab (2011))
This paper presents a new flash model for reservoir fluids in gas – oil se