The research problem arose from the researchers’ sense of the importance of Digital Intelligence (DI), as it is a basic requirement to help students engage in the digital world and be disciplined in using technology and digital techniques, as students’ ideas are sufficiently susceptible to influence at this stage in light of modern technology. The research aims to determine the level of DI among university students using Artificial Intelligence (AI) techniques. To verify this, the researchers built a measure of DI. The measure in its final form consisted of (24) items distributed among (8) main skills, and the validity and reliability of the tool were confirmed. It was applied to a sample of 139 male and female students who were chosen in a random stratified manner from students at the University of Baghdad, College of Education for Pure Sciences/Ibn Al-Haitham, Department of Computer. The proposed AI model utilized three artificial intelligence techniques: Decision Tree (DT), Random Forest (RF), and Gradient Boosting Machine (GBM). The classification accuracy using DT was 92.85 and using GMB was 95.23. The RF technique was applied to find the essential features, and the Pearson correlation was used to find the correlation between the features. The findings indicated that students indeed possess digital intelligence, underscoring the potential for tailored interventions to enhance their digital skills and competencies. This research not only sheds light on the current DI landscape among university students but also paves the way for targeted educational initiatives to foster digital literacy and proficiency in the academic setting.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreMetal contents in vegetables are interesting because of issues related to food safety and potential health risks. The availability of these metals in the human body may perform many biochemical functions and some of them linked with various diseases at high levels. The current study aimed to evaluate the concentration of various metals in common local consumed vegetables using ICP-MS. The concentrations of metals in vegetables of tarragon, Bay laurel, dill, Syrian mesquite, vine leaves, thymes, arugula, basil, common purslane and parsley of this study were found to be in the range of, 76-778 for Al, 10-333 for B, 4-119 for Ba, 2812-24645 for Ca, 0.1-0.32 for Co, 201-464 for Fe, 3661-46400 for K, 0.31–1.
... Show MoreMalaysia's growing population and industrialisation have increased solid waste accumulation in landfills, leading to a rise in leachate production. Leachate, a highly contaminated liquid from landfills, poses environmental risks and affects water quality. Conventional leachate treatments are costly and time-consuming due to the need for additional chemicals. Therefore, the Electrocoagulation process could be used as an alternative method. Electrocoagulation is an electrochemical method of treating water by eliminating impurities by applying an electric current. In the present study, the optimisation of contaminant removal was investigated using Response Surface Methodology. Three parameters were considered for optimisation: the curr
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test ca
... Show MoreThere are many tools and S/W systems to generate finite state automata, FSA, due to its importance in modeling and simulation and its wide variety of applications. However, no appropriate tool that can generate finite state automata, FSA, for DNA motif template due to the huge size of the motif template. In addition to the optional paths in the motif structure which are represented by the gap. These reasons lead to the unavailability of the specifications of the automata to be generated. This absence of specifications makes the generating process very difficult. This paper presents a novel algorithm to construct FSAs for DNA motif templates. This research is the first research presents the problem of generating FSAs for DNA motif temp
... Show MoreIn a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.
Providing Iraqi students with proficiency in English is the ultimate goal of the educational system which is a way of getting knowledge in the fields of arts, sciences, transferring knowledge and sciences to other communities. Therefore, conducting such a type of study is very important because the contents of English textbooks have a huge influence on learning of the students. Once the content of English textbooks contain errors as the correct one, this will effect on his/her learning. The present study is an attempt to evaluate the new course entitled “English for Iraq” for fifth grade students for secondary schools, by Olivia Johnston and Mark Farell. It aims to answer eleven questions relating to the following domains: strength, obj
... Show MoreThe main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show More